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ABSTRACT

Surface completion is a technique for filling missing re-
gions in 3D models measured by range scanners and videos.
Conventionally, although missing regions were filled with
the similar shape in a model, the completion process was
fairly inefficient because the whole region in the model was
searched for the similar shape. In this paper, the completion
is efficiently performed using principal curvatures of local
shape. In experiments, the effectiveness of the proposed
method is successfully verified with subjective evaluation. In
addition, the quantitative evaluation which has not been in the
literature is newly performed.

Index Terms— Surface Completion, Principal Curvature,
Energy Minimization

1. INTRODUCTION

One of the main concerns in 3D modeling of real-world ob-
jects is filling holes derived from occlusions in measurement
to generate complete models. For this problem, lots of sur-
face completion methods that fill missing regions have been
proposed. These methods are classified into two categories:
one is based on considering the smoothness of surface shape
and the other is based on using example shapes.

The former methods [1, 2, 3, 4] can fill missing regions
with smooth surface patches. Although they are effective for
small holes in a 3D model, unnatural shapes may be generated
when the missing parts are large and the surrounding shape is
complex because the methods cannot generate a complex sur-
face. Therefore, in order to generate complex shapes in miss-
ing regions, the methods using example shapes in other parts
of the object (data region) have been intensively developed
[5, 6,7, 8]. These methods [5, 6, 7] calculate the similarity be-
tween the local surface shape around the missing regions and
that in the data region and fill the missing regions by copy-
ing the most similar surface patches successively. The meth-
ods can generate complex surfaces. However, a discontinu-
ous surface is easily generated on the seam in the completed
model because the surface is fixed once it is copied. For this
problem, we have proposed the method based on energy min-
imization using the shape similarity between the missing and

data regions and successfully completed the missing regions
without a discontinuous surface [8].

However, it takes much cost for the conventional methods
including our previous method to complete missing regions
due to two facts: (1) the similarity of shape is calculated for
every surface shape that is rotated every fixed degrees around
the normal axis of the surface [5, 6, 7] and (2) the whole data
region is searched for the most similar shape [5, 6, 7, 8].

In this paper, to make the searching process more effi-
cient, for (1), the angle of the rotation is uniquely determined
using the directions of maximum and minimum principal cur-
vatures of local shapes. For (2), the unneeded calculation of
the similarity is omitted using principal curvatures. In exper-
iments, the effectiveness of the proposed method is subjec-
tively verified. In addition, the quality and efficiency of sur-
face completion are compared by the new quantitative evalu-
ation that has not been performed in the literature.

2. EFFICIENT SURFACE COMPLETION USING
PRINCIPAL CURVATURES

Whole missing regions are optimally completed by minimiz-
ing energy after initial points and faces are generated to miss-
ing regions. Although the flow of the completion process is
same as our previous method [8], the process becomes more
efficient using principal curvatures in this research.

In the following, after briefly introducing the energy func-
tion for surface completion proposed in [8] in 2.1, we describe
the newly proposed approach for surface alignment using di-
rections of principal curvatures for calculating the similarity
in 2.2. Next, the efficient search method using principal cur-
vatures for minimizing the energy function is described in 2.3.

2.1. Energy function based on similarity of local shape

As illustrated in Fig. 1, first, a 3D model is divided into re-
gion Q' including missing region € and data region ® that
is the rest of the object. Region €)' is determined so that a
spherical area A with constant radius whose central point is
in region ' includes at least one of the points in region 2. An
energy function is defined as the weighed sum of SSD (Sum
of Squared Distances) between the points around point p, in
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Fig. 1. Missing and data regions in a 3D model.
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Fig. 2. Alignment of point clouds and surface.

region €} and surface around point p; in region ® as follows:
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where wy, is the weight for each point p; [8]. SSD(p;,p;)
that represents the similarity of local shape between the miss-
ing and data regions is defined as the sum of squared distances
between the points in spherical area A, whose central point
is p,; and the aligned surface around p; as follows:
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where M, denotes the transform matrix for surface align-
ment as shown in Fig. 2. My , g;(p;) is a point on the aligned
surface in the data region that exists in the normal direction of
point py, (€ Ap,). N(Ap,) is the number of points in spherical
area Ap .

2.2, Determination of transform matrix using principal
curvatures of local shape

Transform matrix for surface alignment My, consists of the
3D positions of p; = (zp,,Yp,, 2p,) and P; = (T, Yy, , 25, )
and the basis vectors for p; and p;: (Xp,,¥p ,%p,) and
(Xp, s Y, z;,) as follows:
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Here, the similarity SSD in an energy function largely de-
pends on basis vectors (x,y,z) for each point. The conven-
tional methods inefficiently calculated the similarity for every

surface that is rotated every fixed degrees around the normal
axis. Instead of such an inefficient search, in this research,
the basis vectors are uniquely determined using the directions
of normal and principal curvatures of local surface. In the
following, we describe the way to determine basis vectors
(Xpuypi ,Zp,) for each point p;. First, by principal compo-
nent analysis for 3D coordinates of points in spherical area
By, whose central point is p;, the coordinate system for each
point is set so that x, y and z coordinates are the directions
of the eigenvectors of the first, second and third eigenvalues.
Next, a following quadratic surface function is fitted to points
in area By .

2(x,y) = ax® + by® + cxy + dz + ey + f, 4

where each parameter (a, b, ¢, d, e, f) is determined using the
least-squares method so as to minimize the following cost Q.
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where (Z,Jx,2k) is the 3D coordinate of p, (€ Bp,) in the
coordinate system generated by principal component analy-
sis. Ap, is the weight for point p; and Ap, = 1 in the data re-
gionand A, = s~ in the missing region (s is constant and
d' is the distance from the boundary of the missing region )
because points near the boundary have higher confidence than
those in the center of the missing region. From the estimated
quadratic surface, the directions of normal and maximum and
minimum principal curvatures are set to Xp_, ¥p, and z,_, re-
spectively. Basis vectors (X, ¥p, z;,) are also determined in
the same way.

2.3. Efficient energy minimization by using principal cur-
vatures

In this research, energy function E defined in Eq. (1) is min-
imized using a framework of greedy algorithm. In our defi-
nition of energy F, the energy for each point can be treated
independently only if similar shape pairs (p,, p,) are fixed.
Thus, the following two processes are repeated until the en-
ergy converges: (i) search for similar local shape keeping po-
sitions of points fixed, and (ii) parallel update of all the po-
sitions of points keeping similar shape pairs fixed. Conven-
tionally, because the similarity SSD was calculated for all the
points in the data region, the searching process was fairly in-
efficient in process (i). In this research, dissimilar shapes are
efficiently founded and rejected using principal curvatures.

2.3.1. Efficient Search for similar local shape using principal
curvatures

In the process (i), a data region is searched for similar local
shape keeping the positions of all the points in the missing
region fixed. In the conventional method, SSD is calculated
for all the points in data region ® and the point which gives a



minimum SSD value is determined as the most similar point
p; as follows:

f(p;) = p; = argmin(SSD(p;,p’)). (6)

p'ed

However, it takes much cost to calculate SSD for all the
points. For this problem, in this research, the calculation of
SSD is skipped for the point around which the local shape
may not be similar to that around the target point by using the
maximum and minimum principal curvatures calculated in
surface fitting described in section 2.2. Concretely, the cost
K that is the dissimilarity measure of curvatures is calculated
for all the points in the data region as follows:

Kpp, = (klp, — k15)* + (k2p, — k25, )%, ©)
where maximum and minimum curvatures of target point p;
and corresponding point p; are set to k1p, and k1, , k2p, and
k2p. respectively. Here, there is a high possibility that both
SSD and K get low values if the surface shapes in missing and
dataregions are similar. Therefore, by sorting the points in the
dataregion in ascending order according to K and calculating
SSD only for the top n% points out of all the points in the data
region, the calculation cost is fairly reduced.

In addition, the proposed method uses plane-symmetrical
local surfaces for completion by considering that there are a
lot of plane-symmetrical local shapes in an ordinaly 3D ob-
ject. Concretely, by reversing the sign of a basis vector Xp,
or yp, in the matrix for surface alignment Mg, SSD for the
plane-symmetrical shape is also calculated.

2.3.2. Parallel Update of positions of points

In the process (ii), the positions of all the points p, in the miss-
ing region are updated in parallel so as to minimize energy E
defined in Eq. (1) [8]. In the following, we briefly describe
the method for calculating the positions of points p, for fixed
similar shape pairs. First, energy F is resolved into element
energy E(p;) for each point in the missing region. Here, the
target point to be updated is p;, and the position of the k-th
point inside area Ay_ is expressed as p;, and is corresponded
to f(p;,) by Eq. (6). In this case, the point corresponding to
point p; is g, (p;). Now, element energy E(p,) can be de-
fined in terms of p;, g, (p;) and transform matrix My, )p, for
surface alignment as follows:
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The relationship between total energy E and element energy
E(p;) for each point can be written as follows:

E= Y E(p)+C. )
p;EQ

C is the energy for the points in region Q N ', and is treated
as a constant because positions of points and all the similar
shape pairs are fixed in this region in the process (ii).

Here, it should be noted that all the corresponding points
Mip, )p, 8k (P;) (VP € Ap,) exist in the direction of nor-
mal vector for point p,. Thus, on the assumption that nor-
mal vector np, does not change after updating the position of
p;, whole energy E can be minimized by minimizing element
energy E(p,) independently. The position p, that minimizes
E(p,) is calculated as follows:

Pi= Y. wp,Mipp8(P)/ Y wp,.  (10)
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In addition, in order to efficiently complete the missing
regions, a coarse-to-fine approach is also employed for en-
ergy minimization. Concretely, the radius of spherical area
Ap is decreased and the density of points in a missing region
is increased step-by-step.

3. EXPERIMENT

The proposed method is applied to 3 models with holes shown
in Figs. 3(a), 3(d) and 5(a) and the completed results are eval-
uated subjectively and quantitatively. We also verify the ef-
ficiency of the proposed method. Before applying the com-
pletion process, target holes are specified manually. As ini-
tial points and faces for the missing region, the gravity point
of the boundary points of the missing region and the median
points between the gravity and boundary points were given
and faces were generated so as to connect these points.

In this experiment, as the measure of the quantitative eval-
uation, we employ RMSD (Root Mean Squared Distance) that
is defined based on the distance between points in an original
model and the surface in the completed model as follows:

RMSD = Z Il p; —h(p;) [I” /Nal?,  (11)
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where p; is the point in the original model, h(p,) is the point
on surface in the completed model which exist in the normal
direction of p;, Ng, is the number of points in region 2 in the
original model and [ is the average length of side of mesh in
the data region.

Fig. 3(b) and (e) show the models with initial points and
faces. By refining these initial models with our method, the
missing regions of both models are completed with plausible
surfaces as illustrated in Fig. 3(c) and (f). Fig. 4 shows the
changes in energy and RMSD for each model. In Fig. 4(a),
the initial energy is normalized to 1. From this graph, the
energy and RMSD for each model are gradually decreased by
the iteration process.

Next, to verify the effectiveness of cost reduction using
principal curvatures, the processing time and the completed
models are compared using PC (CPU:Xeon 3.0GHz, Mem-
ory: 8GB). Table 1 shows the processing time and RMSD
with and without the proposed method. From this table, by
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Fig. 3. Completion for models with a hole.

skipping the calculation of SSD, we can confirm that the com-
putational cost is drastically reduced while keeping the qual-
ity of the completed models.

Fig. 5 shows the result of completion for a real environ-
ment. The hole on the wall of a real building and the ground
in this model is generated by the street lamp. Our method also
successfully works not only for synthetic holes but also for a
hole in such a realistic scene.

4. CONCLUSION

In this paper, we have presented an efficient method for sur-
face completion using principal curvatures. In the experi-
ment, our method have successfully and efficiently generated
natural surface shapes. In future work, completion method
for both shape and color will be investigated.
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Fig. 4. Change in energy and RMSD by iteration process.
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Fig. 5. Completion for a real environment.
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Table 1. RMSD and processing time for each model when
computational cost is reduced or not. SSD is calculated for
the top 10% points out of all points in the proposed method.

| || RMSD || Time (sec) |

| Cost reduction || On | Off || On | Off |
Model (I) 0.0396 | 0.0399 || 733 | 4072
Model (II) 0.2275 | 0.2472 || 3586 | 21733




