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Abstract

In this article, we propose an efficient method for estimating a depth map
from long-baseline image sequences captured by a calibrated moving multi-
camera system. Our concept for estimating a depth map is very simple; we
integrate the counting of the total number of interest points (TNIP) in im-
ages with the original framework of multiple baseline stereo. Even by using
a simple algorithm, the depth can be determined without computing simi-
larity measures such as SSD (sum of squared differences) and NCC (normal-
ized cross correlation) that have been used for conventional stereo matching.
The proposed stereo algorithm is computationally efficient and robust for
distortions and occlusions and has high affinity with omni-directional and
multi-camera imaging. Although expected trade-off between accuracy and
efficiency is confirmed for a naive TNIP-based method, a hybrid approach
that uses both TNIP and SSD improve this with realizing high accurate and
efficient depth estimation. We have experimentally verified the validity and
feasibility of the TNIP-based stereo algorithm for both synthetic and real

outdoor scenes.
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1. Introduction

Depth map estimation from images is a very important topic in the field
of computer vision because depth information can be used in several differ-
ent applications such as 3-D modeling, object recognition, surveillance, and
novel view synthesis. In the past decades, a lot of methods for stereo al-
gorithm are developed by many researchers, and most of these works were
designed for a pair of standard camera units [1]. On the other hand, like
the Google Street View, we can now easily acquire an omni-directional im-
age sequence for large outdoor environments by moving a vehicle where the
camera is mounted. However, for such an omni-directional image stream,
most of conventional works designed for two-frame images do not work well
due to large image distortion and large baseline. In this paper, in order to
realize efficient and accurate depth estimation for omni-directional image se-
quence, we extend the conventional multi-baseline stereo framework that is
proposed by Okutomi and Kanade [2]. This method has good feature in that
an arbitrary number of images can be simultaneously used for depth esti-
mation. This increases the accuracy of depth estimation and decreases the
ambiguity in stereo matching. Using recent developments in camera calibra-
tion techniques, the multiple-baseline stereo framework have been employed
for a freely moving video camera [3, 4, 5, 6, 7]. A freely moving video camera
is suitable for the 3-D modeling of a large-scale environment because it easily
makes a long-distance baseline between cameras. However, when we employ
the long-baseline omni-direcitonal images, following weaknesses of original
mult-baseline stereo becomes the critical problem in practice.

(1) Image distortion: In omni-directional video sequence, image patterns



around the physical 3-D point is easily distorted and resolutions of these
patterns are not uniform due to both the characteristic of omni-directional
vision and the large motion of the camera system. Because depth information
should be estimated for any directions, rectification techniques cannot resolve
this problem.

(2) Occlusion: In large-baseline stereo in outdoor environment, there are
much occluders than standard short-baseline stereo. When a point on an
object where the depth is to be estimated is occluded by other objects in
a part of an input video, the occluder gives a negative score to the score
function of the multiple-baseline stereo: SSSD (sum of SSD). This negative
score prevents the algorithm from obtaining a correct estimation of the depth
map around occlusions.

(3) Computational cost: Although the utilization of multiple input images
increases the accuracy of depth estimation, it consumes a large amount of
memory and computational resources. Some patches for the distortion and
the occlusion problems need additional computational cost.

In order to solve these problems, we propose a novel approach that esti-
mates depths by using interest points, as shown in Fig. 1, that are corners
and cross points of edges in images. The framework of our depth estimation
method is basically the same as the original multiple-baseline stereo except
for a newly employed objective function: TNIP (total number of interest
points). The concept is based on the very simple assumption that the cor-
ners of objects and cross points of texture edges in the 3-D space (3-D interest
points) will appear in video images as 2-D interest points at the projected

positions of the 3-D interest points. By searching a depth that maximizes the



Figure 1: Example of interest points.

total number of 2-D interest points under epipolar constraint, the depth can
be determined as the position of a 3-D interest point. It should be noted that
the proposed method assumes that camera parameters of the input videos
are pre-calibrated and the camera calibration problem is beyond the scope
of this research.

By using the objective function TNIP for depth estimation, the problems
mentioned earlier can be solved: (1) Detected position of the 2-D interest
point is ideally not affect by image rotation and distortion. (2) The score
function TNIP is not significantly affected by occluders and the position of
corners indicates the unique position in 3-D space. (3) The computational
cost of depth estimation is very cheap because the depth can be determined
by only counting the interest points. However, depths for non-interest points

cannot be estimated by TNIP; this is not a critical problem for 3-D modeling



and some other applications because 3-D interest points contain the corners
of the 3-D models. Further it should be noted that the TNIP-based method
estimates the depth for the 3-D corners rather than that for the target pixel.
Thus, the accuracy of the depths obtained from the raw TNIP function is a
little lower than that obtained by SSSD; however, TNIP drastically decreases
the computational cost. In this research, in order to resolve the weaknesses
of the raw TNIP function, we also suggest a hybrid approach in which both
SSSD and TNIP are used. In the hybrid approach, first, TNIP is used to
roughly and quickly determine the depth for each interest point. For a limited
searching range by TNIP, the depth value is then re-searched by SSSD with
very small window size.

The reminder of this paper is organized as follows. First, related stereo
algorithms and 3-D reconstruction methods are reviewed in Section 2, and
the contribution of the proposed method is also explained. In Section 3, the
original multi-baseline stereo method for a moving video camera is described.
Then, the new score function TNIP for multiple baseline stereo is proposed
in Section 4. Each process for estimating a dense depth map is detailed in
Section 5. Experimental results with simulation and a real scene are used to
demonstrate the validity and feasibility of the proposed method in Section

6. Finally, Section 7 presents the conclusion and outlines of future studies.

2. Related works

2.1. Multi-view reconstruction

In the field of traditional stereo reconstruction, 3-D information has been

estimated as depth maps by assuming camera parameters are pre-calibrated.



Although they have conventionally been designed for binocular and trinocular
stereo imaging, recent works tend to use multi-view images (8, 9, 10, 11, 12,
13]. In these multi-view approaches, in addition to the traditional depth map
based 3-D representation [2, 12, 13|, voxel based [8, 6, 10] and polygon mesh
based [11] 3-D representation are employed for 3-D reconstruction. However
there are many combinations for 3-D representation and modeling approaches
in these conventional works, one of the common problems for the multi-view
stereo reconstruction is how to corresponds pixels between multiple images.
In order to correspond pixels between images, the photo-consistency measure
have commonly been used. The photo-consistency measure is a similarity
measure that correlates the pixels on multiple images based on variance of
image pixels for projected position of the unique 3-D position. The key
difference between these multi-view works and the proposed method is that
we do not need to utilize any intensity-based similarity measure for making
correspondences between images. Instead of similarity measures, the spatial-
consistency of the positions of feature points is employed, and the method
efficiently tests the spatial consistency by simply counting the interest points

along epipolar lines.

2.2. Feature-based 3-D reconstruction

Another work that closely related to our approach is conventional feature-
based stereo [14, 15, 16]. The feature-based stereo method uses feature points
in images, such as intensity edges on epipolar lines, as positions of matching
candidates in image pairs. In this approach, for these matching candidates, a
similarity measure such as SSD or NCC is computed and the corresponding

points between images are determined based on pattern similarity. In the
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same manner as conventional feature-based stereo algorithms, the proposed
method also employs feature points to realize the efficient and robust determi-
nation of corresponding points. However, our algorithm basically determines
corresponding points without using intensity-based similarity measures.

Similar to the case of feature-based stereo algorithms, EPI(epipolar plane
image)-based 3-D reconstruction [17] uses motion of the edge features along
the epipolar line to recover the 3-D information. In this method, video is
first captured using a video camera that moves along a direction vertical to
the optical axis at a constant speed. The line images of the corresponding
epipolar plane are then collected and expanded vertically to generate the EPI.
In the EPI, corresponding points can be determined easily because they lie
along a line in the EPI. In conventional studies, these lines are detected by
Hough transformation. Okutomi et. al [18] applied the EPI-based method
for rotating camera motion. This method is used for an object on a turning
table and it can detect the sin curve in the EPI image instead of the lines.
The problem faced in the EPI-based methods [17, 18] is that only a steady
camera motion is allowed. Although some deviation from the steady camera
motion can be compensated, it is difficult to process the images that include
camera motion along the optical axis.

On the other hand, structure from motion (SFM) is a 3-D reconstruction
method that uses the motion of feature points [19]. In this approach, based
on the 2-D motion of image features in a video sequence, not only the 3-D
positions of image features but also the camera position and posture param-
eters can be simultaneously estimated. In this study, the SFM is assumed as

one of the camera calibration methods. However, in the SEM approach, good



feature points are usually selected for tracking in order to ensure a certain
accuracy and efficiency. Feature points on repeatable textures and natural
objects are often discarded as outliers. Thus, the 3-D positions acquired by

the SEM are generally very sparse.

2.3. Enhancement of multiple baseline stereo

As mentioned in Section 1, the original multiple baseline stereo method
has some problems. Several methods have been proposed to resolve the
occlusion problem in the multiple baseline stereo method. Okutomi et. al [7]
employed an adaptive window approach [20] to improve the accuracy around
the occluding boundary. In this method, they also attempted to remove
blocking effect in the depth map that is often generated by the adaptive-
window-based method. Kang et. al [21] and Sato et. al [6] proposed a similar
concept idea: the objective function SSSD is computed as the sum of selected
SSD values that are smaller than the median of the SSD values. On the other
hand, Sanfourche et. al [22] employed the photo-consistency-based objective
function that measures the variance of intensity for corresponding points
instead of the original SSSD function. In this method, the photo-consistency
is computed by shifting the projected pixels to the neighboring pixels to
avoid the effect of camera calibration errors. Note that all these conventional
studies are categorized into area-based and pixel-based approaches that use
pixel values to determine the depths. The proposed method is a feature-based
approach and it realizes the fast and robust estimation of the depth map using

a completely different approach as compared to conventional approaches.
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Figure 2: 3-D position of (z,y) with depth z and its projected line to each frame.

3. Multiple baseline stereo by using SSSD

In this section, we first define the coordinate systems of a general moving
camera. We then summarize the principle of the original multiple baseline

stereo method [2] using SSSD.

3.1. Definition of coordinate systems for moving camera

In the multiple baseline stereo, as shown in Fig. 2, the depth 2 of a pixel
(x,y) in the f frame is estimated by using images from the j to k™ frames
(j < f < k). In the following, for simplicity, it is assumed that the focal
length is 1 and the lens distortion effect has already been corrected by known
intrinsic parameters. In this case, the 3-D position of the pixel (z,y) with
depth z is represented as (zz,yz, z) in the camera coordinate system of the
[ frame. The 3-D position (zz,yz, 2) is projected to the pixel (Z;, 9;) in the

image of the i"* frame by the following expression.
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ay; yz
a z
1 1

where a is a parameter and My; denotes a 4 x 4 transformation matrix
from the camera coordinate system of the f* frame to that of the i** frame.
In the multiple baseline stereo, as shown in Fig. 2, the position (z;,7;)
is constrained on the epipolar line, which is the projection of the 3-D line
connecting the position (zz,yz,2) and the center of projection in the f*

frame.

3.2. Depth estimation using SSSD

In the traditional multiple baseline stereo, the depth z of a pixel (x,y) is
determined by using the similarity measure SSD. The SSD is computed as
the sum of the squared differences between two image patterns that have a
certain size W. The SSD for the pixel (z,y) in the f frame and the pixel

(2, 9;) in the 7" frame is defined using the image intensity I as follows.

SSDpiy(2) = > (@ + wy + v) — L(# + wgi + )} (2)

(u,v)CW
In order to evaluate the error in the depth z for all the input images, the

SSD is summed up as follows:
k
SSSDyay(2) =Y | SSD iy (2). (3)
i=j
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The depth z is determined for each frame so as to minimize the SSSD
function. Generally, to find a global minimum of the SSSD, the depth z
should be searched for the entire depth range along a 3-D line from a reference
pixel (z,y).

If the pixel (x,y) in the f frame is occluded by other objects in the it
frame, the cost SSSDy,, (%) for the true depth z is increased by the occluder
because SSDyi,,(2) gives a large error. Thus, to obtain a correct depth
at such an occluded part, some other computationally expensive extensions
should be applied to the original multiple baseline stereo. For example, a
modified SSSD can be computed by summing up only the lower halves of

SSDs [6, 21]. However, the computational cost problem remains unresolved.
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4. Multiple baseline stereo by counting interest points

In this section, a new score function TNIP is defined to estimate the depth
z of a pixel (z,y) using the multiple baseline stereo framework. Generally,
feature points in a 3-D space, such as corners of objects and cross points of
texture edges, appear as 2-D feature points in images at projected positions
of the 3-D feature points. These 2-D feature points can be easily detected
by interest operators such as Harris’s [23] and Moravec’s [24] operators. If
there is a 2-D feature point in image, there is some probability of 3-D corner
existence on the 3-D line connecting this 2-D feature point and camera’s pro-
jection center. In the TNIP based method, basically, the 3-D position where
this probability becomes the maximum is searched for along the epipolar
lines as shown in Figure 2. By searching a depth that maximizes the total
number of 2-D interest points under epipolar constraint, the depth can be
determined as the position of a 3-D interest point.

In this study, the depth z of a pixel (z,y) is determined so as to maximize

the TNIP score function that is defined as follows.

k
TNIPpoy(2) =) Hi (2 + u, §; + v). (4)

=7 (u,v)CW
1 ; interest point exists at
Hi(u,v) = (u,v) in i frame. (5)

0 ; otherwise

The TNIP score represents the total number of interest points that exist
within the (Z;, 9;) centered windows W for all the frames. It should be noted

that the size of W should be appropriately small because interest points are
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not detected at positions far from the projected positions of (xz,yz, z) when
there exists a feature point in the 3-D space.

By using the TNIP instead of the SSSD function in the multiple baseline
stereo, the computational time can be drastically decreased because the time
consuming process of comparing intensity patterns can be eliminated from
the depth estimation. Moreover, the TNIP has another good feature in that
it is not significantly influenced by occluders because it counts only positive

scores. These claims will be experimentally verified in later sections.
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5. Depth estimation from an image sequence

This section describes the processes of depth estimation. In the proposed
method, after detecting the interest points in all the input images, the depths
of all the interest points are determined by the multiple baseline stereo frame-
work with the TNIP score function. The outliers of the estimated depths are
then eliminated by using their confidences defined by considering the consis-

tency among the results in multiple frames.

5.1. Depth estimation for interest points

The depths of all the interest points detected in the video images are
computed by maximizing the TNIP score function that is defined in Section
4. The depth z is searched along a 3-D line from each target pixel so as
to maximize the TNIP score in a given range of depth. In order to find
the best depth value that maximizes TNIP, all the depths within the given
range should be tested. For realizing an efficient search, the skip value [
for the depth z is adaptively determined in this study. Concretely, the 3-D
line segment that connects (zz,yz,2) and (z(z +1),y(z + 1),z + 1) is pro-
jected to each frame, and the skip value [ for depth z is adjusted so that
the maximum length of the projected line segment becomes a certain length
L(L < 1.0) [pixel]. It should be noted that no intensity images are required to
compute TNIP-scores after once all the feature points on images are detected
Only the 2-D positions of interest points and camera parameters should be
stored to compute the TNIP-scores. This implies that the proposed method
requires only one-eighth the memory space required by SSSD to compute

depth, assuming that 8-bit grayscale images are used in SSSD. Although the
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Figure 3: Cause of estimation error in TNIP.

TNIP-based method can estimate depths with a low computational cost, the
raw TNIP function has a weakness in that the accuracy of the estimated
depth is slightly worse than that in case of SSSD. Below, we describe the
reason and solution for this weakness.

As shown in Fig. 3, the TNIP-based method estimates the depth value by
using interest points that are detected around the projected position p;(j <
i < k) of the 3-D interest point P. However, the detected position x; of the
interest point P in the i"* frame does not always coincide with the projected
position p; due to feature detection errors. For the target frame f, there
also exists a detection error for the pixel x;. Thus, the searching line for
the depth of x; may not cross the 3-D point P. As shown in Fig. 3, in
this case, although the correct depth for the pixel x; is 2z¢oprect, the TNIP

16



score is maximized at z;y;p that is almost equal to the depth zp of the 3-D
position P. This is caused by a characteristic of the TNIP score function; the
TNIP-based method estimates the depth for the 3-D corners rather than the
depth for the target pixel. In contrast, the SSSD-based methods do not have
such a problem. This characteristic of the TNIP may not be a problem for
certain applications such as collision avoidance and environment recognition
where robustness and efficiency are more important than accuracy.

On the other hand, for applications where the accuracy of the depth
remains an important factor, one solution is to refine the estimated depth
using the SSSD. More concretely, after TNIP-based depth estimation, a lim-
ited range (zyn;p — Cl < z < zpnyp + Cl) can be re-scanned by SSSD. If
we employ this hybrid approach, although the advantages in terms of mem-
ory requirement are lost, the computational efficiency is maintained because
the searching range of depth in re-scanning is quite limited in the refinement
process. Moreover, because the TNIP function is not significantly affected by

occlusions, the hybrid approach can robustly and accurately estimate depths.

5.2. Elimination of outliers

In this process, unreliable depths are eliminated by a cross validation
approach for multiple image inputs. Fig. 4 shows an example setting of
two cameras. The depth zy of the pixel x is evaluated by a consistency
check of the estimated depths. First, for the i** frame, the projected position
x; of the 3-D position Sy that corresponds to the depth z; is computed.
Inversely, for the f frame, the projected position x' of the 3-D position
S; that corresponds to the depth z; is computed. The consistency for the
depths z; and z; is then evaluated by the distance d;(x) = |x — x'| in the

17



1 frame
fth frame

Figure 4: Elimination of outliers.

target frame. In this research, the confidence R(x) for the depth z; of the

pixel x is defined as follows using distance d;.

S0 di(x) > T, 1;di(x) < T) -
B k—j+1 ’
where T is a threshold for the distance d; that judges whether or not the

R(x)

depth z; is consistent with the depth z;. The confidence R(x) indicates a
rate of consistent depth pairs. If all the depths are correctly estimated, R(x)
has a maximum value of 1. In the proposed method, the depth z; of the pixel
x whose confidence R(x) is lower than a given threshold U is regarded as an
outlier, and it is deleted. Note that for the TNIP-based algorithm, a feature

point exists at the position X; in each frame, and for these feature points, the
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depth z; is directly available. However, when no feature point exists at the
position X; or the hybrid approach is employed, the depth z; is unknown and
d;(x) cannot be computed. In this case, z; is first computed by interpolation
using the estimated depths of nearby feature points, and they are then used

to compute d;(x).
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6. Experiments

We have conducted two types of experiments. One is concerned with the
comparison of SSSD, TNIP, and the hybrid (HYBRID) method by means of
a computer simulation. The other is conducted for depth map estimation
for a real outdoor environment. For all the experiments, the Harris interest
operator [23] is employed as an interest point detector. Although the SIFT
detector [25] has often been employed as an interest operator in many recent
researches, this operator tends to detect non-corner points due to its scale
independent characteristic and the points detected by SIFT do not satisfy
the assumption for TNIP. Thus, the Harris operator, one of the standard

corner detectors, is employed in this experiment.

6.1. Quantitative evaluation in computer simulation

In this section, we first describe the configuration of the computer sim-
ulation. After determining the best window size for the SSSD, TNIP, and
HYBRID approaches, the accuracy and computational efficiency are com-

pared.

6.1.1. Setup of computer simulation

In the experiment, two textured planes are located in a virtual environ-
ment, and a virtual camera captures an image sequence by moving the camera
around these planes. Two types of texture patterns are used for the planes,
as shown in Fig. 5. The layout of the planes and the motion path of the
virtual camera are illustrated in Fig. 6. A total of 91 input images, some
of which are shown in Fig. 7, are captured by the moving camera whose

motion draws a quarter circle, as shown in Fig. 6. Due to the motion of the
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Table 1: Parameters used in the simulation.

(a) for depth estimation.

Searching range of depth [mm] 3,000-35,000
Maximum depth skip on image L [pixel] 1.0
Re-scanning range coefficient C 10

(b) for outlier elimination.
Threshold of distance T [pixel] | 1.0

Threshold of confidence U 0.4

camera, plane 1 is occluded by plane 2 after half of the input images, and
both textures are apparently distorted by the camera motion. In order to
consider camera calibration errors related to intrinsic and extrinsic camera
parameters, a Gaussian noise with standard deviation ¢ is added to the pro-
jected positions of the 3-D points and these positions are sampled to pixels.

The other parameters that are used for this experiment are listed in Table 1.
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(a) plane 1 (b) plane 2

Figure 5: Textures of planes.

10 m

(a) first frame (b) middle frame (c) last frame

Figure 7: Sampled frames from 91 input images.
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6.1.2. Determination of window size

In this experiment, the best window size W in Egs. (2) and (4) is de-
termined using the same conditions as those in the computer simulation
described in the previous section. In order to determine the window size W,
we evaluated the rate of inaccurate depth estimation based on the average

re-projection error that is defined as follows.

N
L, = %;&iz’_iiﬂa (7)
where p is a pixel index and N is the number of images used for depth
estimation and it is set as 91 in this experiment. X;, is a projected position of
the estimated depth z in the ¢*" frame for the pixel p, and X;, is the projected
position of the ground truth. In this experiment, the automatic elimination
of the outliers described in Section 5.2 is not performed to show the raw
characteristic of each method, and if E), is over 1.0 pixel for the pixel p, the
estimated depth for the pixel p is judged to be inaccurate.

Fig. 8 shows the rate of inaccurate depth estimation for various window
sizes and various noise levels. As shown in this figure, although the best
window size of TNIP is 3 x 3 pixels, the rate of inaccurate depth estimation
is greater than that of SSSD for 7 x 7 pixels, the best size for SSSD. As
described in Section 5.1, it is difficult for TNIP to estimate the depth with
high accuracy due to the detecting errors of feature positions in the target
frame.

On the other hand, in the HYBRID, the depths are refined after TNIP-
based estimation using the SSSD function. For the HYBRID, the horizontal

axis in Fig. 8 indicates the window size of SSSD in the refinement process,
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Figure 8: Rate of inaccurate depth estimation (E > 1.0 pixel) for various window sizes

and noise levels.

and the window size of TNIP for the initial estimate is fixed as 3 x 3 pix-
els. From this figure, it is confirmed that 7 x 7 pixels is the best size for
the HYBRID and the rate of inaccurate depth estimation for this approach
HYBIRD is almost the same as that in the case of SSSD.

Table 2 indicates the average time required to estimate the depth of a sin-
gle pixel using all the 91 input images with respect to different window sizes.
The implementations of these methods are the same except for the objective
function. The computation time is measured by using a PC (CPU: Pentium
4 Xeon 3.20 GHz dual core, Memory: 2 GB). From this table, we can con-
firm that the computational costs of the TNIP (3 x 3 window) and HYBRID
(7 x 7 window) approaches are approximately 9 times and 5 times lesser

than that of SSSD (15 x 15 window). Although a more detailed analysis is
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Table 2: Average computational time required for estimating the depth of a single pixel

[ms].

w I1x1(3x3|7x7]15x15]31x31
SSSD | 13.6 | 25.2 | 86.3 | 353.9 1530
TNIP | 9.0 9.8 | 11.2 13.0 21.2
HYB. | 10.3 | 11.5 | 16.7 40.1 141.3

described in the following section, it is evident that the HYBRID approach
realizes efficient depth determination with almost same the accuracy as the

conventional SSSD-based method.

6.1.3. Accuracy comparison of TNIP, SSSD, and HYBRID

In this experiment, the TNIP, SSSD, and HYBRID methods are compared
using the best window size for each method. In order to analyze the char-
acteristic of each method for the occlusions, the entire image region (ALL)
is divided into the occluded region (OCC) and other region (NOR). In this
experiment, a region where the pixel in the target frame is occluded in more
than half of the reference images is classified as OCC.

Fig. 9 shows a stacked bar chart that indicates the breakdown of esti-
mated errors. The vertical axis in this figure indicates the number of esti-
mated depths and each chart is separated by the level of average re-projection
errors. For the horizontal axis, a combination of outlier elimination (with or

without), noise level o, and objective functions (SSSD, TNIP, and HYBRID)
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Figure 9: Analysis of estimation errors for each region.

26




are specified. As shown in Fig. 9(a), without outlier elimination, the rate of
accurate depth estimation (E < 1.0 pixel) for the region ALL is almost the
same as that in the case of SSSD and HYBRID, and that of TNIP is worse
in this case. For large errors (E > 10.0 pixels), although the rate is almost
at the same level for all the methods when the noise level is low, if the noise
level is high (0 = 2.0 pixels), larger errors of TNIP are suppressed as com-
pared to the others. This result validates one very important characteristic
of TNIP; As explained in Section 5.1, the TNIP estimates the depth for the
3-D corners rather than the depth for the target pixel. By this reason, TNIP
cannot estimate precise depth for the target pixel. However, TNIP can es-
timate more roughly correct depths than that of SSSD especially with high
noise level. Thus, in this case, the hybrid approach can realize more accurate
depth estimation than SSSD by refining the result using TNIP. With outlier
elimination, for all the methods, most inaccurate results (E > 2.0 pixels)
are eliminated. This demonstrates the effectiveness of outlier elimination, as
described in Section 5.2.

Figs. 9(b) and (c) show the error rates for the occluded region (OCC)
and the other region (NOR), respectively. Note that scale of the vertical
axis for OCC is different from that of other graphs because the occupancy
rate of the OCC region for the ACC region is approximately 0.1. From the
comparison of (b) and (c), it can be confirmed that the error rate for SSSD in
the OCC region is much higher than that in the NOR region. In contrast, the
error rates of the TNIP and HYBRID for the OCC region are not drastically
different from those for the NOR region. This verifies the robustness of the

proposed method for occluded regions.
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From these experimental results, it is confirmed that the new objective
function TNIP is robust for occlusions; however its raw accuracy is lower
than that of the SSSD. The hybrid approach that uses both the TNIP and
the SSSD can realize robust and accurate depth estimation with a lower
computational cost. Please also note that TNIP based method can involve
most of improvements for SSSD based multi-baseline stereo because TNIP

employs the same framework with SSSD based multi-baseline stereo.

6.2. Depth estimation in an outdoor environment

In this experiment, an outdoor environment is captured by an omnidirec-
tional multi-camera system (OMS): Pointgrey Ladybug. Fig. 10(a) shows
a photograph of Ladybug, and (b) shows the view volume of each camera
unit that is illustrated based on the camera calibration result. This camera
system has six radially located camera units and captures six synchronized
image sequences at 15 fps (resolution of each camera: 768 x 1024 pixels).

First, the outdoor environment was captured by the OMS as 3,000 images
(500 frames). Fig. 11 shows a sampled frame of six input image sequences.
Intrinsic camera parameters including geometric relations among fixed cam-
era units are calibrated in advance by using a marker board and a 3-D laser
measure [26]. Extrinsic camera parameters of the input image sequences
are estimated using bundle adjustment by tracking both a small number of
feature landmarks of known 3-D positions and a large number of natural
features of unknown 3-D positions in input images across adjacent camera
units [27]. Fig. 12 shows the recovered camera path that is used as an input
for depth estimation. The curved line and pyramids denote the motion path

of a camera unit and its posture at every 20 frames, respectively. The length
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(a) appearance (b) view volume

Figure 10: Omnidirectional multi-camera system, Ladybug.

of the camera path is approximately 29 m. The accuracy of the estimated
camera path is evaluated as 50 mm and 0.07° with regard to the camera
position and posture, respectively [27].

By using input images and estimated camera parameters, omnidirectional
depth maps are actually estimated by the hybrid method. After the detection
of interest points for all the frames of six input image sequences by using the
Harris operator, the depths of all the interest points are estimated using the
TNIP score function. In this experiment, 1,750 interest points are detected
on average in a single input image (10,500 points per frame). Interest points
in the (f —100)% to the (f+100)™ frames at every 2 frames (606 images, 101
frames) are used to estimate the depth data for the f® frame. The size of the
window W for TNIP (for initial estimation) and SSSD (for refinment) were
set as 3 x 3 and 7 x 7, respectively, according to the result of the simulation

described in Section 6.1.2. The searching range to find a maximum TNIP in
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Figure 11: Sampled frame of input image sequences.
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(a) top view (b) side view

Figure 12: Camera path of OMS used for input (29 m).

this stage is 1,000 mm (near) to 80,000 mm (far).

Next, low confidence depths are eliminated. The thresholds for 1" and
U for outlier detection were set as 2.0 pixels and 0.3, respectively. In this
experiment, approximately half of the estimated depths are rejected as out-
liers. As a result, on average, 700 depths for each image (4,500 depths per
frame) were acquired. This is much larger than 88 depths for each image (530
depths per frame) that are computed at the structure from motion process
for extrinsic camera parameter estimation in this experiment.

Fig. 13 shows the results of depth estimation for the images shown in Fig.
11. In this figure, the depth values are indicated by the intensity. Fig. 14
indicates the TNIP and SSSD scores for the six randomly selected interest
points shown in Fig. 13. The solid vertical line in the graph for SSSD
indicates the depth value given by the TNIP and the dotted line indicates
the refined depth value determined by the SSSD. It can be confirmed from
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Figure 13: Result of depth estimation for the interest points shown in Fig. 11.
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Fig. 14 that each TNIP plot has a single apparent peak at a certain depth
value and there are no other comparable peaks. This clearly shows that
depth estimation can be easily preformed for these interest points. In the
refinement process by SSSD, except for point 4, there exists an apparent
local minimum for each point and the TNIP gives a good initial value for
refinement. The graph of SSSD for point 4 is comparatively flat because
point 4 indicates a low-contrast texture on the ground. Even for such a
texture, TNIP has a peak and the limitation of the searching range is thus
considered to be preformed appropriately.

Finally, omnidirectional dense depth maps are generated using depth
interpolation. For depth interpolation, first, 2-D feature points in omni-
directional images are triangulated by Delaunay’s triangulation method [28].
After triangulation, the depth of each pixel is determined by computing the
depth for 3-D plane for each triangle in 3-D space. Fig. 15 shows a panoramic
image that is generated from the six input images shown in Fig. 11. Fig. 16
shows the corresponding dense depth map. By comparing these figures, it
is observed that the depth map is correctly computed for most parts of the
input image. However, some incorrect depths are also observed around the
boundaries between the buildings and the sky. These incorrect results are
caused by depth interpolation over different objects. In order to improve the
result, region information in the input images should be considered as in the

case of [29, 30].
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Figure 14: TNIP and SSSD scores for depth searching.
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Figure 15: Panoramic image generated from the six images acquired by the OMS.

Figure 16: Generated dense depth map.
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7. Conclusion

In this paper, a novel multi-baseline stereo for a moving camera has been
proposed, where the depth can be determined by only counting the number
of interest points. The raw TNIP function has a weakness in that highly
accurate depth estimation is difficult due to feature detection errors in the
target frame. In order to resolve this problem, we also propose the hybrid
approach that refines the estimated depth using the SSSD function for a
limited searching range. The proposed method is robust against occlusions
and distortions, and its computational cost is also cheaper than that of the
method based on the traditional SSSD function. We have experimentally
verified our claims by using both synthetic and real image sequences. In
future studies, the estimated depth maps will be integrated to reconstruct a

3-D model of a large outdoor environment.
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