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Fast and Accurate Camera Parameter

Estimation Based on Feature Landmark

Database for Augmented Reality
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In the field of augmented reality (AR), a number of vision-based extrinsic
camera parameter estimation methods have been proposed to achieve geometric
registration between real and virtual worlds. Previously, we proposed a feature
landmark-based camera parameter estimation method for outdoor AR applica-
tions. Advantages of this method were that a feature landmark database can be
automatically constructed by the structure-from-motion (SfM) and there is no
necessity to arrange artificial markers in a target place. However, the previous
method could not work in real-time because this method involves high com-
putational matching cost between landmarks in a database and image features
in an input image. Additionally, the accuracy of estimated camera parame-
ters was insufficient for specific applications which need to overlay CG objects
at the position close to the user’s viewpoint. This is due to the difficulty in
compensation of visual pattern change of close landmarks only from sparse 3-D
information obtained by the SfM. In this report, we achieve fast and accurate
feature landmark-based camera parameter estimation by employing the follow-
ing approaches. (1) The number of matching candidates is reduced to achieve
fast camera parameter estimation using tentative camera parameter and prior-
ity of landmark. (2) Image templates of landmarks are adequately compensated
for by considering local 3-D structure of landmark using dense depth informa-
tion obtained by a laser range sensor. To demonstrate the effectiveness of the
proposed method, we have developed several AR applications.

1. Introduction

The technique of overlaying virtual worlds onto the real world is called aug-

mented reality (AR). AR enables us to obtain location-based information intu-

itively. AR technologies are applicable to many fields such as human naviga-

tion1),2), assistance in education3), and landscape simulation4). To realize these
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Fig. 1 Example of overlaid virtual objects close to the user’s viewpoint.

applications, the real and virtual world coordinate systems should be aligned to

overlay virtual objects. Recently, video see-through AR is extensively investi-

gated because it can achieve highly accurate geometric registration by vision-

based camera parameter estimation.

Previously, Oe et al. proposed a feature landmark-based camera parameter

estimation method5). This method uses a feature landmark database that is au-

tomatically constructed by the structure-from-motion (SfM) to estimate extrinsic

camera parameters. Although this method can easily be applied to large-scale

environments, its computational cost in the matching process is expensive and

it cannot work in real time. In addition, for applications that need to overlay

virtual objects near the use’s viewpoint as shown in Figure 1, the accuracy of

estimated camera parameters is not sufficient. This is due to the difficulty of

compensation for visual aspect change of landmarks only from sparse depth in-

formation obtained by SfM. In this study, we propose a method to achieve fast

and accurate feature landmark-based camera parameter estimation by solving

above problems by following ideas.

• In order to reduce the computational cost for camera parameter estimation, a

small number of confident matching candidates is selected based on tentative

camera parameters and priorities of landmarks.

• In order to improve the accuracy of camera parameters at the spot where
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virtual objects must be aligned at the position close to the user, image tem-

plates of landmarks are compensated for by using dense depth information

obtained by the omnidirectional laser range sensor.

Figure 2 shows a flow diagram of the proposed method. In the offline stage

(A), the proposed method uses both SfM and the laser range sensor for specific

site where virtual objects must be aligned close to the user. SfM is used to

efficiently collect landmark information in a wide area ((A-1.1), (A-2.1)). On

the other hand, the laser range sensor is used to collect landmark information

at the spot where virtual objects are placed close to the user ((A-1.2), (A-2.2)).

In the online stage (B), in order to reduce the matching cost, tentative camera

parameters are estimated to limit matching candidates of natural features in

an input image by landmark tracking in successive frames (B-2). In addition,

priorities are associated with landmarks by using training videos taken in the

target environment and these priorities are then used to preferentially select

matching candidates of landmarks whose matching confidences are high (B-3).

The remainder of this report is organized as follows. Section 2 discusses related

works. Section 3 reviews the previous feature landmark-based camera parameter

estimation method5). Then, the reduction in computational cost and the im-

provement in accuracy are described in Sections 4 and 5, respectively. To show

the effectiveness of the proposed method, our method is applied to some AR

applications in Section 6. Finally, Section 7 presents the conclusion and outlines

the the future work.

2. Previous Work

In the research field of AR, vision-based camera parameter estimation meth-

ods are widely employed because they can achieve pixel-level alignment. Most

of vision-based methods focus on estimating extrinsic camera parameters by as-

suming that the intrinsic camera parameters are known. These methods can be

classified into two groups. One is a visual-SLAM based approach6)–10) that es-

timates camera parameters without preknowledge of target environments. The

other is preknowledge-based approach5),11)–16) that uses 3-D information of target

environments.

The visual-SLAM based method simultaneously estimates relative camera mo-

(A-1.2) Acquisition of depth map 
and surface texture 

A Database construction Offline) 

(B-1) Initial camera parameter estimation 

(B-5) Camera parameter estimation using correspondences 

B  Camera parameter estimation Online) 
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by landmark tracking 

(A-2.2) Acquisition of landmark 
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Fig. 2 Flow of the proposed method. Thick squares indicate the new or modified processes.

tion and the 3-D structure of the target environment by tracking natural fea-

tures in input images6)–10). This method can easily construct an AR environ-

ment without premeasurement of the target environment. The disadvantage of

visual-SLAM methods is that they cannot predetermine the coordinate system

for arrangement of CG objects. This means the approach cannot be directly used

for position-dependent AR applications such as navigation and landscape simu-

lation by itself. To determine the coordinate system, Bleser et al. use a partially

known 3-D model10) and Klein et al. employ interactive initialization9). How-

ever, these approaches are impractical for a large-scale outdoor environment due

to human effort of users. In addition, accumulative estimation error is introduced
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when camera parameters are estimated by visual-SLAM.

The other uses some kinds of preknowledge of target environments to estimate

camera parameters in the global coordinate system5),11)–16). In this approach, 3-

D models11)–14) and feature landmarks5),15),16) are used as preknowledge of target

environments. Three-dimensional model based methods are used only for small

workspaces because they require large human costs to construct 3-D models for

large-scale environments. To reduce the construction cost of 3-D models, Neubert

et al. proposed a semiautomatic model construction method17) that involves the

detection of planar regions in a video sequence. However, it is still difficult to

construct 3-D models for complex environments using this method.

On the other hand, feature landmark based methods estimate extrinsic camera

parameters from correspondences of landmarks in a database and image features

in an input image. Skrypnyk et al.15) and Arth et al.16) use SfM to construct the

feature landmark database. The feature landmark database can be automatically

constructed using SfM only from image sequences captured in the target envi-

ronment. However, SfM only from image sequences results in accumulative esti-

mation error, which is the same drawback as that of the visual-SLAM approach.

To avoid this problem, in our previous method5), the feature landmark database

is efficiently constructed even in a large-scale and complex environment by using

the accumulative error free SfM for an omnidirectional camera18),19). However,

this method has several problems. It cannot achieve real-time processing, which

is necessary for AR, because of the computational cost of matching landmarks

to image features. For the computational cost reduction, Skrypnyk et al. em-

ploy approximate nearest neighbor search in the matching process15). In order

to achieve fast retrieval of matching candidates of landmarks from the database,

Arth et al.16) limit the number of visible landmarks using a potential visible set,

and Irschara et al.20) employ the vocabulary tree21) to retrieve landmarks. Unlike

other natural feature based camera parameter estimation methods, in our previ-

ous method, most of the computational time is spent on pattern compensation to

handle the difference between the camera properties the omnidirectional camera

used in the database construction process and that of the monocular camera used

in the online camera parameter estimation process. In general, the camera used

to acquire the prior knowledge and the user’s camera are different. This pat-

tern compensation cost could not be reduced by using the previously proposed

computational cost reduction approaches15),16),20). In addition, the accuracy of

the estimated camera parameters is insufficient for AR applications that involve

the placing of a virtual object near the user’s viewpoint. This is due to the

difficulty of matching landmarks that exist close to the user. Visual patterns of

close landmarks easily change with viewpoint change. The sparse 3-D informa-

tion obtained by the SfM process is insufficient for the successful compensation

for the pattern change caused by the viewpoint change for close landmarks. To

achieve matching that is robust to the viewpoint change, Wu et al.22) proposed

robust pattern matching for viewpoint change by the extraction of a SIFT de-

scriptor23) from a normalized patch generated by projecting an input image to a

local plane around the landmark. However, it is still difficult for this method to

determine the correspondences for close landmarks because the visual aspects of

close landmarks are easily changed even for a small viewpoint change.

In this study, we focus on the feature landmark-based method5), which can

be easily applied in large-scale and complex environments. By solving the prob-

lems of computational cost and accuracy, we develop a fast and accurate camera

parameter estimation method for implementing AR applications.

3. Overview of Landmark-based Camera Parameter Estimation

In this section, the basic framework of the feature landmark-based camera

parameter estimation method5) is briefly reviewed. The feature landmark-based

method is composed of the offline stage, which comprises database construction,

and the online stage, which comprises camera parameter estimation, as shown in

Figure 2.

3.1 Database Construction

The feature landmark database must be constructed before starting the online

camera parameter estimation. In this process, first, 3-D information of the target

environment is acquired by SfM. Next, landmark information is generated from

the SfM results and they are registered to the database.

3.1.1 Three-dimensional Reconstruction by SfM

Three-dimensional reconstruction of the target environment is achieved by

SfM for an omnidirectional camera18),19), as shown in Figure 3. In this pro-
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cess, first, the target environment is captured in the form of omnidirectional

video sequences. Next, natural features in the captured video are detected and

tracked using the Harris corner detector24). Three-dimensional positions of nat-

ural features and extrinsic camera parameters of the omnidirectional camera are

estimated by SfM. In this SfM process, several known 3-D points18) or GPS mea-

surements19) can be used to suppress accumulative estimation error. Again, by

using this additional information, we obtain the 3-D information in the global

coordinate system.

3.1.2 Acquisition of Landmark Information

The feature landmark database consists of a number of landmarks. The 3-D

coordinate and viewpoint dependent information associated with each landmark

is stored in the database. Viewpoint dependent information consists of captured

positions and image templates of the landmark.

Three-dimensional coordinate of landmark: Three-dimensional positions

of natural features obtained using the SfM process are registered to the database

as landmarks. In the online stage, extrinsic camera parameters are estimated

from correspondences between the 3-D positions of landmarks in the database

and the 2-D positions of natural features in the input image.

Viewpoint dependent information: Viewpoint dependent image templates

of landmarks are generated and then registered to the database to deal with

visual aspect change of landmarks. To generate these image templates, first, a

local plane that is perpendicular to the line connecting the 3-D position of a

landmark with the projection center of the omnidirectional camera is defined, as

shown in Figure 4. Next, pixel values of the image templates are determined by

projecting the captured image to the local plane. The generated image templates

are then registered to the database. Positions of the omnidirectional camera, from

which image templates are generated, are also registered to the database as the

index for landmark selection in the online stage.

3.2 Camera Parameter Estimation

In this process, first, camera parameters for the first frame are estimated us-

ing the landmark-based camera parameter estimation method for a still image

input25). Next, the landmark selection, corresponding pair search, and camera

parameter estimation processes are repeated.

(a) Sampled images acquired byomnidirectional camera 

(b) SfM result 

Fig. 3 Sampled images and SfM result used for database construction.

3.2.1 Landmark Selection from Database

Observable landmarks from the user’s viewpoint are selected from the database

as matching candidates for natural features in the input image. To select observ-

able landmarks, the following criteria are used.
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Fig. 4 Generation of viewpoint dependent image template.

• Landmarks must be projected onto the input image by using camera param-

eters of the previous frame M t−1.

• The angle between the normal vector of the image template of the land-

mark and the vector from the camera position of the previous frame to the

landmark must be under the threshold θ.

Landmarks that satisfy the above requirements are selected from the database,

and then, observable landmarks are narrowed down to a certain number N and

arranged in the ascending order of the distance between the camera position of

the previous frame and the captured position of the landmark. In order for the

landmarks to be evenly distributed over the input image, we divide the input

image into a grid, and only one landmark is selected for each grid.

3.2.2 Search for Corresponding Pairs and Camera Parameter Esti-

mation

Camera parameters are estimated from correspondences between landmarks

and image features. In this process, first, landmarks selected from the database

are projected onto the input image using the camera parameters M t−1 as follows:[
aiui aivi ai

]T
= M t−1

[
xi yi zi 1

]T
(1)

where, (xi, yi, zi) and (ui, vi) represent the 3-D position and 2-D position of

landmark i, respectively. ai represents the depth of landmark i in the camera

coordinate system.

Next, natural features within a fixed window W whose center is located at

(ui, vi) are selected as matching candidates. Image patterns of natural features

are then compensated for in the same manner as that in the database construction

process. Corresponding pairs of landmarks and image features are searched using

normalized cross-correlation (NCC).

After determining the corresponding pairs, extrinsic camera parameters M t

are estimated by solving the PnP problem26). To remove outliers, the LMedS

estimator27) is applied to this process.

The computational cost for this matching process Cprev is as follows:

Cprev = NFA (2)

where, N represents the number of selected landmarks, F represents the average

number of natural features in the window W , and A represents the testing cost

for each feature, including compensation of visual pattern and calculation of

similarity measures.

4. Reduction of Computational Cost by Priority-based Landmark

Selection and Landmark Tracking

This section describes the method to reduce the computational cost of the

corresponding pair search process described in 3.2.2. The computational cost

of the matching process is given by Eq. (2). In this equation, the testing cost

A cannot be easily reduced for successful matching because the computation of

a similarity measure requires that for the difference between the cameras used

in the offline stage and the camera used in the online stage be compensated.

Thus, in our method, the numbers of candidates matching landmarks N and

natural features F are reduced by the tentative camera parameter estimation

(B-2) and landmark selection based on priorities of landmarks (B-3). Details of

the proposed method are described in the following sections.

4.1 Tentative Camera Parameter Estimation by Landmark Tracking

In order to reduce the number of candidates matching natural features F in Eq.

(2), we carried out the new process of estimating tentative camera parameters of

the current frame is newly estimated by landmark tracking in successive frames.

In this process, first, the landmarks that are used to estimate camera parameters

in the previous frame are selected and then tracked to the current frame. In the
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successive frames, the visual patterns of landmarks hardly change and compensa-

tion for patterns is not necessary. Thus, in this tracking process, visual patterns

around the projected positions of the landmarks in the previous frame are used as

image templates of landmarks in the current frame, and the sum of squared dif-

ferences (SSD) is simply used as the similarity measure. It should be noted that

matching candidates in the current frame are limited to natural features within

the window W whose center is located at the position of the matched landmark

in the previous frame. After finishing the landmark tracking process, outliers are

rejected by the LMedS estimator, and then, tentative camera parameters in the

current frame M̂ t are estimated by solving the PnP problem using the tracked

landmarks. It should be noted that estimation of tentative camera parameters

fails when the number of tracked landmarks is less than six or the rate of outliers

is over 50% in our system. In this case, camera tracking is terminated in current

our implementation. In order to recover the camera parameter estimation pro-

cess after failure, re-initialization techniques suggested in Reitmayr et al.28), and

Williams et al.29) can be employed.

The computational cost for tentative camera parameter estimation Ctrack is as

follows:

Ctrack = NtrackFB + ELMedS (3)

where, Ntrack represents the number of tracked landmarks, B represents the cal-

culation cost of the SSD for each pair, and ELMedS represents the cost for outlier

rejection and camera parameter estimation. Tentative camera parameter esti-

mation can be achieved with the lower computational cost because the matching

cost B is much smaller than that of A in Eq. (2).

4.2 Landmark Selection Based on Priorities

In this process, the number of landmarks N in Eq. (2) is reduced using a

geometric constraint and assigning priorities of landmarks. The approach of

assigning priorities to landmarks is newly considered in the proposed method.

The priority Pi of the landmark i is defined as the probability that landmark i

is used in the online camera parameter estimation, and it is given as follows:

Pi =
Ei

Di
(4)

where, Ei represents the frequency that the landmark i is used as the inlier in the

camera parameter estimation process (B-5), and Di represents the frequency that

the landmark i is selected from the database in the landmark selection process

(B-3). In this paper, we assume that in order to set priorities, the system admin-

istrator trains the system with several videos captured in the target environment

before the system is used by users.

In this landmark selection process, first, observable landmarks except for the

landmarks tracked in process (B-2) are selected from the database using a geo-

metric constraint that is almost the same as the one used in the previous method.

Next, top Nprior confident landmarks are selected from the observable landmarks.

It should be noted that several landmarks (N ′
track) have already been matched

in the tentative camera parameter estimation process (B-2) before starting the

landmark selection process. Therefore, in this process, the maximum number of

Nprior is fixed as Nmax, and Nprior is determined by subtracting the number of

tracked landmarks N ′
track from Nmax. Using priorities of landmarks, we can

efficiently select the small number of landmarks to be used in the next process

(B-4).

4.3 Search for Corresponding Pairs and Camera Parameter Estima-

tion

This process is basically the same as that used in the previous method except

for the range of search window. First, selected landmarks are projected onto

the input image using tentative camera parameters M̂ t. Next, corresponding

pairs of landmarks and natural features are searched within the fixed window

W ′, whose center is located at the projected position in the input image. Using

tentative camera parameters, the window size of W ′ can be made smaller than

that of the process (B-2). Finally, extrinsic camera parameters are estimated by

using corresponding pairs and tracked landmarks.

The computational cost of new matching process (B-4) is as follows:

Cproj = NpriorF
S′

S
A (5)

where, S and S′ represent the sizes of windows W and W ′, respectively. By

estimating the tentative camera parameters, we reduce the number of matching

candidates of natural features by S′/S.
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4.4 Updating Priorities

After finishing the camera parameter estimation, we update the priorities of

landmarks using frequency information obtained from the result of the camera

parameter estimation as follows:

Pi =
Eiold + Einew

Diold +Dinew
(6)

where, E and D are frequency information described in Section 4.2. Subscripts

iold and inew denote the past and current video sequences, respectively.

4.5 Comparison of Computational Cost

The ideal effect of the computational cost reduction in matching process (B-4)

can be computed from Eqs. (2), (3), and (5) as follows:

Cnew

Cprev
=

Ctrack + Cproj

Cprev
(7)

=
Ctrack

Cprev
+

Nmax −N ′
track

N

S′

S
(8)

where, Cnew is the matching cost in the proposed method. In this equation,

the first term and the second term represent the overhead for tentative camera

parameter estimation in the process (B-2) and the effect of computational cost

reduction in the process (B-5), respectively. In fact, the effect of computational

cost reduction does not perfectly conform with this equation because of the cost

of the overhead in the iteration process. The actual effect of the cost reduction

will be demonstrated in the experiment.

4.6 Experiment

The computational cost is compared with that of the previous method5). We

take an omnidirectional sequence in the target environment and then the feature

landmark database is constructed using SfM18) and an omnidirectional camera

(Point Grey Research, Inc.; Ladybug) in the outdoor environment. Figure 3

shows the sampled images used for database construction and the SfM result.

In this experiment, about 12400 landmarks are registered to the database and

each landmark has 8 image templates on average. For the proposed method,

we captured three training videos of the target environment to determine the

priorities of landmarks. Camera paths of these training sequences are almost the

same as the test sequence. To evaluate the proposed and previous methods, we

also capture another video image sequence (720 × 480 pixels, progressive scan, 15

fps, 1,000 frames). For a quantitative evaluation, we generated the ground truth

by the estimating camera parameters with manually specified correspondences of

landmarks. It should be noted that we have removed several frames in which the

reprojection error of the obtained ground truth is over 1.5 pixels. Table 1 shows

the parameters for this experiment.

To verify the effectiveness of the proposed method, the following four methods

are compared.

Method A: Previous method5)

Method B: Proposed method without landmark selection based on priorities

Method C: Proposed method without tentative camera parameter estimation

Method D: Proposed method

In this experiment, first, in order to determine the number of landmarks to be

selected, we compared the rate of estimation failure. Next, the computational

cost of these methods is compared.

Figure 5 shows the number of failure frames for various number of selected

landmarks in process (B-3). In this experiment, we deemed the result to be a

failure when the number of corresponding pairs is less than 6. Methods A and B,

which did not use priorities of landmarks, failed to estimate the camera parameter

for several frames when the number of landmarks was 70 or less. Methods C and

D, which use priorities of landmarks, did not fail when the number of landmarks

Table 1 Parameters in experiment.

Previous method5) Proposed method
Image template size - 15

in process (B-2) (pixel)
Window size - 120× 60
W (pixel)

Window size 120× 60 20× 20
W ′ (pixel)

Angle threshold 15
θ (degree)

Number of grids in 74× 48
input image
Training data - Three sequences

Initial value of priority - 1/2
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Fig. 5 Relation between number of landmarks and failure frames.

was more than 30. From these results, we determine the number of landmarks as

required 80 for the methods A and B and 30 for the methods C and D. Table

2 shows the processing time for each method when we used a laptop PC (CPU:

Core2 Extreme 2.93 GHz, Memory: 2 GB). For method D, which involved the

estimation of tentative camera parameters and selection of landmarks with high

priorities, the total computational cost was about six times lower than that of

the method A. As a result, the proposed method can work at video rate. The

computational cost of matching process (B-4) was 21 times lower than that of the

method A. However, Eq. (8) indicates that ideally, the effect of the computational

cost reduction would make method D over 48 times cheaper than that of the

method A (N = 80, Nprior−N ′
track ≤ 30, S′/S = 1/18). This difference between

the ideal and real outcomes is caused by the cost of overhead. Table 3 shows the

accuracy of each method. From this result, methods B, C, and D improved

Table 2 Comparison of processing time for one frame (ms).

Method A B C D
Process (B-2) - 26 - 21
Process (B-3) 12 3 2 1
Process (B-4) 316 51 131 15
Process (B-5) 61 16 16 17
Overhead 4 4 4 5
Total cost 393 100 153 59

Table 3 Comparison of accuracy.

Method A B C D
Avg. position error 360 257 231 256

(mm)
Std. dev. position error 528 137 204 181

(mm)
Avg. posture error 0.84 0.95 1.13 0.91

(degree)
Std. dev. posture error 0.71 1.20 1.16 0.91

(degree)
Avg. reprojection error 2.5 2.3 2.1 1.8

(pixel)

the accuracy of estimated camera parameters. We think this improvement is

obtained by selecting small number of confident matching candidates.

4.7 Summary

In this section, we achieved fast feature landmark based camera parameter es-

timation by reducing the matching candidates. The number of feature points are

reduced by estimating tentative camera parameters. The number of landmarks

are reduced by using priorities of landmarks. In the experiment, our method

can achieve online camera parameter estimation in video rate. In addition, the

accuracy of online camera parameter estimation is improved by selecting small

number of confident matching candidates using above strategies.

5. Accuracy Improvement using Laser Range Sensor

This section describes the method for database construction using the dense

depth map to improve the accuracy of online camera parameter estimation. In

the offline stage, the dense depth map is obtained by using the laser range sensor

at the spot where user will come close to CG objects. In this place, landmark in-

formation is also collected by using the dense depth map in addition to landmark

information collected by the SfM. In the online stage, these collected landmarks

are used by considering the difference of 3-D measuring method.

5.1 Acquisition of Depth Map and Surface Texture

In this process, 3-D information of the target environment is acquired by using

the omnidirectional camera and the omnidirectional laser range sensor as shown

in Figure 6. In this scanning process, geometric relationship M rc between these
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sensors are fixed and calibrated in advance. The depth map corresponding to an

omnidirectional image is generated from the range data obtained by the range

sensor using geometric relationship M rc. It should be noted that the laser range

sensor has a limit of measuring range. The obtained depth map involves lack

areas including the sky area. If we simply mask and ignore them, the aperture

problem will be caused against landmarks which exist at the boundary between

landscape and the sky. However, these landmarks are important to determine

the camera posture. To avoid the aperture problem, in this study, infinite depth

values are set for the sky areas. Concretely, the largest region without depth

values in the omnidirectional image is determined as the sky area.

5.2 Acquisition of Landmark Information

Landmark information is generated from the acquired depth map and the om-

nidirectional image. First, natural feature points are detected from the omni-

directional image by using Harris corner detector24) and then 3-D positions of

these features are determined from the depth map. These natural features are

registered to the database as landmarks. In order to deal with view dependent

information in the same as the previous method, the ground plane is divided into

the grid whose center is the sensor position and then image templates of land-

marks are generated for every grid point as shown in Figure 7. Concretely, first,

virtual camera is set at the grid point. Next, visible landmarks at the position of

the virtual camera are determined by using the range data and then depth value

for each pixel on the image template of the landmark is obtained from range

data. Finally, pixel values on the image template are determined by projecting

the omnidirectional image using these depth values. In this pattern generation,

occluded areas in the image template are set as masked areas in order to ignore

them in the pattern matching process (B-4).

5.3 Merging of Landmarks from SfM and Laser Range Sensor

In the proposed method, two kinds of landmarks obtained by the SfM

(LDBSfM ) and the range sensor (LDBLaser) can be merged seamlessly. How-

ever, in the online process (B-5), LMedS estimator tends to select landmarks only

from one side. This one-sided selection causes a jitter problem at the position

where both landmarks obtained by the SfM and those by the range sensor can

be observed. To avoid this problem, we newly add the constraint to the ran-

Omnidirectional camera 

Omnidirectional 
laser range sensor 

Surface texture 

Depth map 

Fig. 6 Sensor setup and Omnidirectional data.

3-D position of landmark 

Projection center 
of virtual camera 

Local shape around landmark 

Projection center 
of camera 

Projection 

Fig. 7 Generation of image template by considering local 3-D structure around the
landmark.

dom sampling process (constrained random sampling). Concretely, two different

random sampling processes are executed depending on the situation.

• If all of the temporal pairs for the LMedS are selected from either LDBSfM

or LDBLaser, general random sampling is used.

• Otherwise, the samples which do not contain either LDBSfM or LDBLasert

are immediately rejected in the repeating process of LMedS.

By this strategy, one sided selection of landmarks is avoided. Effect of constrained
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Fig. 8 SfM result.

random sampling will also demonstrated in the experiment.

5.4 Experiment

In this experiment, to demonstrate the effectiveness of combination of the land-

mark database constructed using the SfM and that by the laser range sensor, the

effectiveness of pattern compensation by considering local 3-D structure of the

landmark is evaluated and then the accuracy of estimated camera parameters

is compared to the method which uses only SfM-based database construction.

The range data is obtained using the omnidirectional laser range sensor (Reigl

Inc. LMS-Z360) and one omnidirectional sequence is captured in the target en-

vironment. Specifications of this sensor are shown in Table 4. Figure 6 and

Figure 8 show acquired surface texture as well as corresponding depth map and

a result of SfM, respectively. The ground plane of the target environment

is divided into 10 × 10 grid points at 1 meter intervals for range sensor based

landmark acquisition. Constructed feature landmark database consists of about

Table 4 Specifications of laser range sensor

Measurable range 1m∼100m
Measurement accuracy ±12mm

Measurable angle
Horizontal: 360◦
Vertical: -50◦ ∼ 40◦

Step angle 0.08◦

8800 landmarks (LDBSfM ) and about 3500 landmarks (LDBLaser). The video

image sequence (720 × 480 pixels, progressive scan, 15fps, 450 frames) captured

in the target environment is used as the input video for the evaluation of online

camera parameter estimation. The parameters in online camera parameter es-

timation are same as the section 4.6. For the quantitative evaluation, we made

the ground truth by the same way as the section 4.6. In this experiment, the

maximum distance between the omnidirectional camera path and the monocular

camera path was about 3 meters.

First, to verify the effectiveness of the pattern compensation using the dense

depth map, generated image templates of landmarks by using the process (A-

2.1) which uses sparse depth information and the process (A-2.2) which uses

dense depth information are quantitatively evaluated by comparing them with

ground truth. In this experiment, viewpoints for pattern compensation are given

by estimating camera parameters with manually specified correspondences of

landmarks in input images. Table 5 shows average and standard deviation of NCC

values between compensated image templates and image patterns of landmarks

in input images for 30 image templates of landmarks. By using the dense depth

information, the average NCC value (0.63) is higher than that of the method

which does not consider the local 3-D structure around the landmark (0.47).

Figure 9 shows the generated image patterns. It is confirmed that the image

templates of landmarks are adequately compensated for by considering the local

3-D structure around the landmark.

Next, the accuracy of estimated camera parameters using the database con-

structed by the SfM and the range sensor (SfM+Range method) is compared

to the method which uses only SfM-based database construction (SfM method).

Figure 10 shows corresponded landmarks used to estimate camera parameters.

As can be seen in this figure, although the SfM method finds small number of

corresponding landmarks at the ground part of the images, a lot of correspond-

Table 5 Comparison of normalized cross-correlation value.

Using dense
depth information

Using sparse
depth information

Avg. 0.63 0.47
Std. dev. 0.039 0.052
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Ground truth Using sparse depth Using dense depth 

Fig. 9 Generated image templates of the landmark.
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Fig. 10 Corresponded landmarks. Red circles indicate landmarks measured by SfM. Green
circles indicate landmarks measured by range sensor.

ing pairs of landmarks and feature points were found for the ground part in the

SfM+Range method. This is regarded as the effect of the pattern compensation

using dense 3-D information. Figure 11 shows error in position for each frame.

The accuracy of estimated camera parameters which only uses the database con-

structed by the range sensor (Range method) is also shown in this figure. It

should be noted that the range method cannot estimate camera parameters in

the entire sequence. The effect of the SfM+Range can be confirmed because the

accuracy of the SfM+Range is improved to the same level of that by the Range
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Fig. 11 Error in position for each frame. Red line indicates result of proposed method, which
uses both SfM and range data. Blue line indicates the result of the method that uses
only Range. Green line indicates the result of the method that uses only SfM.

method for the places where range data are available. Average position errors

for the SfM+Range, Range, and SfM methods are 282mm, 229mm, and 543mm,

respectively. In this experiment, the SfM+Range method has used landmarks

measured by the range sensor during frame number 82 to 301. From this result,

it is confirmed that the SfM+Range method can improve the accuracy of esti-

mated camera parameters for most of the frames. This improvement is gained

from corresponded landmarks close to the user.

5.5 Summary

In this section, we proposed the accuracy improvement of online camera pa-

rameter estimation at the spot where CG objects must be placed near the user’s

viewpoint by using the laser range sensor. Unlike other methods, the landmarks

close to the user’s viewpoint that effect the accuracy of geometric registration

are aggressively used by compensating its visual patterns based on dense depth

information acquired by using omni-directional range finder. Importance of close

landmarks are validated quantitatively through the experiment.

11 c© 2011 Information Processing Society of Japan



IPSJ SIG Technical Report

6. Applications

To show the usefulness of the proposed method, the proposed method is applied

to three different kinds of applications.

• Outdoor Navigation

• MR-PreViz

• Virtual Historical Experience

Database construction methods for each application are shown in Table 6. In

virtual historical experience, we use both SfM and the laser range sensor to

construct the database because users will come close to the CG objects in this

application. Details of applications are described in the following sections.

6.1 Outdoor Navigation

In this application, the feature landmark database is constructed by the SfM in

the campus shown in Figure 12. Navigation information is manually aligned in

advance. In the scenario of user navigation, low cost development of the database

for wide-range area is more important than alignment errors of several pixel levels.

Thus, we didn’t use the laser range sensor. In this experiment, we used the video

camera (Sony DSR-PD150) and the laptop PC (CPU: Core 2 Quad 3.0 GHz,

Memory: 4 GB). Figure 13 shows the result of AR navigation. It is confirmed

that annotation information is overlaid at geometrically correct positions. By

using AR for navigation, navigation information is intuitively given to the user.

However, in the initialization process in the online process, the camera must be

fixed during the initial camera parameter estimation because this initialization

process needs about 30 seconds. In order to realize practical application, speed-

up of the initialization process or estimation of user’s movement is needed.

6.2 MR-PreViz

In the pre-production of filmmaking, pre-visualization techniques are employed

Table 6 Database construction method

Method

Outdoor navigation SfM18)

MR-PreViz SfM18)

Virtual historical experience SfM18) and laser range sensor

Department of 
Information Science 

Department of 
Biological Science 

University 
Union 

Fig. 12 Overhead view of the target environment.

in order to test a camera work and acting. Conventionally, a pre-visualization

movie has been created by computer graphics. On the other hand, a MR pre-

visualization (MR-PreViz) technique, which creates the pre-visualization movie

using both real images and CG-rendered actors on site, has been proposed. From

the MR-PreViz, directors and actors can easily grasp the camera work and acting.

Currently, most of MR-PreViz methods30),31) are designed for indoor environ-

ments. In order to realize MR-PreViz in outdoor environments, we applied our

method to MR-PreViz. In this experiment, we used the SfM18) to construct the

database. For the online process, we used the video camera (Sony DSR-PD150)

and the laptop PC (CPU: Core 2 Extreme 2.93 GHz, Memory: 2 GB) Figure

14(a) and Figure 14(b) show the detected landmarks in the input image and

MR-PreViz images, respectively. Our method has successfully worked in such

a natural environment. PreViz images are generated at 15 frames per second.

Although MR-PreViz images include a minimum of 1/15 seconds delay, it was

little problem for the actual application.
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Input image AR image 

Fig. 13 AR navigation.

6.3 Virtual Historical Experience

There are many dilapidated historical sites worldwide. In these places, AR

applications could enable visitors to visualize their original appearance of the

cultural heritage. In this experiment, temple ruins in the ancient Japanese capital

(a) Detected landmarks

(b) Overlaid CG actors

Fig. 14 MR-PreViz. Green circles indicate detected landmarks in input images.

city of Asuka are virtually reconstructed at its original site. In this scenario, users

would come close to virtual objects. Therefore, a feature landmark database is

constructed using SfM18) and the laser range sensor. In this experiment, we used

the same equipments of the AR navigation in the online stage. Figure 15 shows

the result of the AR sightseeing. Virtual objects are overlaid on the site of the old

temple. We have confirmed that CG objects placed at the position close to the

user’s viewpoint are correctly registered. The AR sightseeing can realize virtual

historical experience.

7. Conclusion

In this study, we have proposed the real-time and accurate camera param-

eter estimation method using the feature landmark database for outdoor AR.

To achieve real-time processing, matching candidates of landmarks and natural
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Input image AR image 

Fig. 15 AR sightseeing.

features are efficiently reduced by using tentative camera parameter estimation

and priority-based landmark selection and confident matching candidate selec-

tion affected the improvement of the accuracy of camera parameter estimation.

The accuracy of estimated camera parameters is improved by using the dense

depth map obtained by the laser range sensor at the spot where virtual objects

are placed near the user’s viewpoint. Importance of close landmarks is quantita-

tively validated through the experiment. The feasibility of the proposed method

was demonstrated by applying the proposed method to some AR applications.

Currently, the feature landmark database must be rebuilt when appearance of

the scene is partially or completely changed e.g. by construction of new buildings

and season change. Our next challenge in this project is to develop a strategy for

updating the landmark database using images captured by a user’s camera. This

will reduce the cost of constructing and maintaining the landmark database.
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