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Abstract

In the field of augmented reality (AR), many kinds of vision-based extrinsic camera parameter estimation methods
have been proposed to achieve geometric registration between real and virtual worlds. Previously, a feature landmark-
based camera parameter estimation method was proposed. This is an effective method for implementing outdoor AR
applications because a feature landmark database can be automatically constructed using the structure-from-motion
(SfM) technique. However, the previous method cannot work in real time because it entails a high computational cost
or matching landmarks in a database with image features in an input image. In addition, the accuracy of estimated
camera parameters is insufficient for applications that need to overlay CG objects at a position close to the user’s
viewpoint. This is because it is difficult to compensate for visual pattern change of close landmarks when only
the sparse depth information obtained by the SfM is available. In this paper, we achieve fast and accurate feature
landmark-based camera parameter estimation by adopting the following approaches. First, the number of matching
candidates is reduced to achieve fast camera parameter estimation by tentative camera parameter estimation and
by assigning priorities to landmarks. Second, image templates of landmarks are adequately compensated for by
considering the local 3-D structure of a landmark using the dense depth information obtained by a laser range sensor.
To demonstrate the effectiveness of the proposed method, we developed some AR applications using the proposed
method.

Keywords: extrinsic camera parameter estimation, natural features, landmark database, augmented reality

1. Introduction

The technique of overlaying virtual worlds onto the
real world is called augmented reality (AR). AR en-
ables us to obtain location-based information intuitively.
In recent years, AR has become very important in the
market growth of the mobile devices, including smart-
phones and portable game devices. Unfortunately, at
present, the AR experience using these devices is does
not practically applicable because of the large registra-
tion error between real and virtual environments. Gen-
erally, the position and posture of the camera embed-
ded in a mobile device should be correctly estimated to
achieve geometric registration between real and virtual

environments. Current AR applications rely on embed-
ded sensors such as GPS, magnetic compass, and gy-
roscope; however, the errors introduced by the use of
such devices are large and are directly translated into
registration errors in the AR image. Vision-based meth-
ods are known as an effective solution for reducing reg-
istration errors because they can directly compute and
reduce alignment errors on the image. In fact, for mo-
bile devices in small workspaces, the vision-based cam-
era parameter estimation method is often employed with
fiducial markers. However, as the employment of fidu-
cial markers is impractical for implementing outdoor
AR applications, many kinds of natural feature-based
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Figure 1: Example of overlaid virtual objects close to the user’s view-
point.

methods have been developed in the past decade.
Previously, we proposed a feature landmark-based

camera parameter estimation method as a geometric
registration method for implementing outdoor AR ap-
plications [1]. This method uses the structure-from-
motion (SfM) technique for omnidirectional camera
system to automatically and efficiently estimate the 3-D
positions of natural feature points in large-scale outdoor
environments; these positions are then used as land-
marks of known 3-D positions for camera parameter es-
timation. However, there remained several problems for
implementing a practical AR system in an outdoor en-
vironment using this method. One is the high computa-
tional cost of calculating similarity measures between a
large number of pairs of landmarks and feature points.
The other is the poor accuracy of geometric registration
in specific conditions. In this study, we focused on these
two problems and solved them by adopting the follow-
ing ideas.

(1) Priorities are assigned to landmarks for effectively
omitting unnecessary computation of similarity
measures between landmarks and feature points.

(2) Dense depth information for specific sites acquired
by an omnidirectional laser range sensor is inte-
grated in the feature landmark database to improve
the accuracy of geometric registration.

It should be noted that SfM-based methods for landmark
database construction are sufficient for most parts of the
target environment. However, if both the following con-
ditions are satisfied, registration error easily becomes
large in an AR image.

(a) Landmarks that exist near the viewpoint (close
landmarks) are not detected.

(A-1.2) Acquisition of depth map 
and surface texture 

（A）Database construction（Offline) 

(B-1) Initial camera parameter estimation 

(B-5) Camera parameter estimation using correspondences 

（B） Camera parameter estimation（Online) 

(B-2) Tentative camera parameter estimation  
by landmark tracking 

(A-2.2) Acquisition of landmark 
information 

(A-3) Registration of landmark information 

(A-1.1) 3-D reconstruction  
by the SfM 

(A-2.1) Acquisition of landmark 
information 

(B-3) Landmark selection based on priorities 

(B-4) Search for corresponding pairs 

(B-6) Updating priorities 

Figure 2: Flow of proposed method. The thick squares indicate the
new processes employed in this study.

(b) CG objects are drawn near the viewpoint, as in the
case shown in Figure 1.

Condition (a) is caused when the camera goes far away
from the original viewpoints of the SfM or when fea-
ture points do not exist around the user’s viewpoint. For
these places, we measure dense depth information us-
ing the laser range sensor, and the information from the
laser range sensor is integrated with the data from SfM.
Although several methods that use either the SfM or the
laser range sensor for constructing the database have al-
ready been reported [1–4], as far as we know, the com-
bination of the SfM and the laser range sensor for bal-
ancing the database construction cost and the accuracy
has not been discussed in the AR community.

Figure 2 shows a flow diagram of the proposed
method. Our method is composed of two stages. In
offline stage (A), a landmark database, which contains
3-D positions of landmarks and associated visual infor-
mation, is constructed by using SfM and the laser range
sensor. In the online stage (B), both landmark track-
ing and priorities of the landmarks are used, resulting
in a noticeable decrement in the computational cost. It
should be noted that the laser range sensor is not used
in the online stage (B). Contributions of this article are
the following.

• Suggestion of priority based landmark selection
and landmark tracking for reducing computational
cost in the online stage.
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• Suggestion of the combined use of the SfM and the
laser range sensor for balancing the database con-
struction cost and the accuracy of geometric regis-
tration.

• Verifications of the importance of close landmarks
and the effectiveness of above two suggestions in
real outdoor environments.

The remainder of this paper is organized as follows.
Section 2 discusses related works. Section 3 reviews the
basic framework of the feature landmark-based camera
parameter estimation method [1]. Then, the reduction
in computational cost and the improvement in accuracy
are described in Sections 4 and 5, respectively. The
effectiveness of the proposed method is quantitatively
evaluated in Section 6. Finally, Section 7 presents the
conclusion and outlines the future work.

2. Related Works

In the research field of AR, vision-based camera pa-
rameter estimation methods are widely employed be-
cause they can achieve pixel-level alignment. Most
of vision-based methods focus on estimating extrinsic
camera parameters by assuming that the intrinsic cam-
era parameters are known. These methods can be clas-
sified into two groups. One is a visual-SLAM based
approach [5–9] that estimates camera parameters with-
out preknowledge of target environments. The other is
a preknowledge-based approach [1–3, 10–13] that uses
3-D information of target environments.

The visual-SLAM based method simultaneously es-
timates relative camera motion and the 3-D structure of
the target environment by tracking natural features in in-
put images [5–9]. This method can easily construct an
AR environment without premeasurement of the target
environment. The disadvantage of visual-SLAM meth-
ods is that they cannot determine the absolute position
for arrangement of CG objects. This implies that, by
itself, the approach cannot be directly used for position-
dependent AR applications such as navigation and land-
scape simulation. Another problem of visual-SLAM is
that estimation errors are accumulated, if we use only
visual information. It causes the drift of overlaid CGs
for large-scale outdoor environments. To determine the
coordinate system, Bleser et al. use a partially known
3-D model [9] and Klein et al. employ interactive ini-
tialization [8]. However, these approaches are impracti-
cal for a large-scale outdoor environment because they
require manual arrangement of CGs and coordinate sys-
tem by users themselves.

The other uses some kinds of preknowledge of tar-
get environments to estimate camera parameters in the
global coordinate system [1–3, 10–13]. In this ap-
proach, 3-D models [10–13] and feature landmarks [1–
3] are used as preknowledge of target environments.
Three-dimensional model based methods are used only
for small workspaces because they require large human
effort to construct 3-D models for large-scale environ-
ments. To reduce the construction cost of 3-D mod-
els, Neubert et al. proposed a semiautomatic model con-
struction method [14] that involves the detection of pla-
nar regions in a video sequence. However, it is still diffi-
cult to construct 3-D models for complex environments
using this method.

On the other hand, feature landmark-based methods
estimate extrinsic camera parameters from the corre-
spondences of landmarks in a database with image fea-
tures in an input image. Skrypnyk et al. [2] and Arth
et al. [3] use SfM to construct the feature landmark
database. The feature landmark database can be auto-
matically constructed using SfM only from image se-
quences captured in the target environment. However,
SfM only from image sequences results in accumula-
tive estimation error, which is the same drawback as
that of the visual-SLAM approach. To avoid this prob-
lem, in our previous method [1], we used accumula-
tive error free SfM for an omnidirectional camera, and
the feature landmark database is efficiently constructed
even in a large-scale and complex environment [15, 16].
However, this method has several problems. It can-
not achieve real-time processing, which is necessary
for AR, because of the computational cost of matching
landmarks to image features. To reduce the computa-
tional cost, Skrypnyk et al. employ approximate near-
est neighbor search in the matching process [2]. In
order to achieve fast retrieval of matching candidates
of landmarks from the database, Arth et al. [3] limit
the number of visible landmarks using a potential vis-
ible set, and Irschara et al. [17] employ the vocabulary
tree [18] to retrieve landmarks. In our previous method,
most of the computational time is spent on pattern com-
pensation to handle the difference between the camera
properties of the omnidirectional camera used in the
database construction process and that of the monoc-
ular camera used in the online camera parameter esti-
mation process. This cost could not be reduced by us-
ing the previously proposed computational cost reduc-
tion approaches [2, 3, 17]. In addition, the accuracy of
the estimated camera parameters is insufficient for AR
applications that involve the placing of a virtual object
near the user’s viewpoint. This is due to the difficulty of
matching landmarks that exist close to the user. Visual
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patterns of close landmarks easily change with view-
point change. The sparse 3-D information obtained by
the SfM process is insufficient for the successful com-
pensation for the pattern change caused by the view-
point change for close landmarks. To achieve matching
that is robust to the viewpoint change, Wu et al. [4] pro-
posed robust pattern matching for viewpoint change by
the extraction of a SIFT descriptor [19] from a normal-
ized patch generated by projecting an input image to a
local plane around the landmark. However, it is still dif-
ficult for this method to determine the correspondences
for close landmarks because the visual aspects of close
landmarks are easily changed even for a small viewpoint
change.

In this study, we focus on the feature landmark-based
method [1], which can be easily applied in large-scale
and complex environments. By solving the problems
of computational cost and accuracy, we develop a fast
and accurate camera parameter estimation method for
implementing AR applications.

3. Basic Framework of Feature Landmark-based
Camera Parameter Estimation

In this section, the basic framework of the feature
landmark-based camera parameter estimation method
[1] is briefly reviewed. The feature landmark-based
method is composed of the offline stage, which com-
prises database construction, and the online stage,
which comprises camera parameter estimation, as
shown in Figure 2.

3.1. Database Construction

The feature landmark database must be constructed
before starting the online camera parameter estimation.
In this process, first, 3-D information of the target envi-
ronment is acquired by SfM. Next, landmark informa-
tion is generated from the SfM results and registered to
the database.

3.1.1. Three-dimensional reconstruction by the SfM
Three-dimensional reconstruction of the target en-

vironment is achieved by SfM for an omnidirectional
camera [15, 16], as shown in Figure 3. In this process,
first, the target environment is captured in the form of
omnidirectional video sequences. Next, natural features
in the captured video are detected and tracked using the
Harris corner detector [20]. Three-dimensional posi-
tions of natural features and extrinsic camera parameters
of the omnidirectional camera are estimated by the SfM.
In this SfM process, several known 3-D points [15] or

(a) Sampled images acquired byomnidirectional camera 

(b) SfM result 

Figure 3: Sampled images and SfM result used for database construc-
tion.

GPS measurements [16] can be used to suppress accu-
mulative estimation error. Again, by using this addi-
tional information, we obtain the 3-D information in the
global coordinate system.

3.1.2. Acquisition of landmark information
The feature landmark database consists of a number

of landmarks. The 3-D coordinate and viewpoint de-
pendent information associated with each landmark is
stored in the database. Viewpoint dependent informa-
tion consists of captured positions and image templates
of the landmark.
Three-dimensional coordinate of landmark: Three-
dimensional positions of natural features obtained us-
ing the SfM process are registered to the database as
landmarks. In the online stage, extrinsic camera param-
eters are estimated from correspondences between the
3-D positions of landmarks in the database and the 2-D
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3-D position of  
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Image plane 
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Projection 

Figure 4: Generation of viewpoint dependent image template.

positions of natural features in the input image.
Viewpoint dependent information: Viewpoint de-
pendent image templates of landmarks are generated
and then registered to the database to deal with visual
aspect change of landmarks. To generate these image
templates, first, a local plane that is perpendicular to the
line connecting the 3-D position of a landmark with the
projection center of the omnidirectional camera is de-
fined, as shown in Figure 4. Next, pixel values of the
image templates are determined by projecting the cap-
tured image to the local plane. The generated image
templates are then registered to the database. Positions
of the omnidirectional camera, from which image tem-
plates are generated, are also registered to the database
as the index for landmark selection in the online stage.

3.2. Camera Parameter Estimation

In this process, first, we assume camera parameters
for the first frame have already been given using the
landmark-based camera parameter estimation method
for a still image input [21] or other methods. Next,
the landmark selection, corresponding pair search, and
camera parameter estimation processes are repeated.

3.2.1. Landmark selection from the database
Observable landmarks from the user’s viewpoint are

selected from the database as matching candidates for
natural features in the input image. To select observable
landmarks, the following criteria are used.

• Landmarks must be projected onto the input image
by using camera parameters of the previous frame
Mt−1.

• The angle between the normal vector of the image
template of the landmark and the vector from the
camera position of the previous frame to the land-
mark must be under the threshold θ.

Landmarks that satisfy the above requirements are se-
lected from the database, and then, observable land-
marks are narrowed down to a certain number N and
arranged in the ascending order of the distance between
the camera position of the previous frame and the cap-
tured position of the landmark. In order for the land-
marks to be evenly distributed over the input image, we
divide the input image into a grid, and only one land-
mark is selected for each grid.

3.2.2. Search for corresponding pairs and camera pa-
rameter estimation

Camera parameters are estimated from correspon-
dences between landmarks and image features. In this
process, first, landmarks selected from the database are
projected onto the input image using the camera param-
eters Mt−1 as follows:[

aiui aivi ai

]T
= Mt−1

[
xi yi zi 1

]T
(1)

where, (xi, yi, zi) and (ui, vi) represent the 3-D position
and 2-D position of landmark i, respectively. ai repre-
sents the depth of landmark i in the camera coordinate
system.

Next, natural features within a fixed window W
whose center is located at (ui, vi) are selected as match-
ing candidates. Image patterns of natural features are
then compensated for in the same manner as that in the
database construction process. Corresponding pairs of
landmarks and image features are searched using nor-
malized cross-correlation (NCC).

After determining the corresponding pairs, extrinsic
camera parameters Mt are estimated by solving the PnP
problem [22]. To remove outliers, the LMedS estimator
[23] is applied to this process.

The computational cost for this matching process
Cprev is as follows:

Cprev = NFA (2)

where, N represents the number of selected landmarks,
F represents the average number of natural features in
the window W, and A represents the testing cost for each
feature, including compensation of visual pattern and
calculation of similarity measures.

4. Reduction of Computational Cost for Fast Cam-
era Parameter Estimation

This section describes the method to reduce the com-
putational cost of the corresponding pair search pro-
cess described in 3.2.2. The computational cost of the
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matching process is given by Eq. (2). In this equa-
tion, the testing cost A cannot be easily reduced for
successful matching because the computation of a simi-
larity measure requires that for the difference between
the cameras used in the offline stage and the camera
used in the online stage be compensated. Thus, in our
method, the numbers of candidates matching landmarks
N and natural features F are reduced by the tentative
camera parameter estimation (B-2) and landmark selec-
tion based on priorities of landmarks (B-3). Details of
the proposed method are described in the following sec-
tions.

4.1. Tentative Camera Parameter Estimation

In order to reduce the number of candidates match-
ing natural features F in Eq. (2), we carried out the
new process of estimating tentative camera parameters
of the current frame is newly estimated by landmark
tracking in successive frames. In this process, first, the
landmarks that are used to estimate camera parameters
in the previous frame are selected and then tracked to
the current frame. In the successive frames, the visual
patterns of landmarks hardly change and compensation
for patterns is not necessary. Thus, in this tracking pro-
cess, visual patterns around the projected positions of
the landmarks in the previous frame are used as im-
age templates of landmarks in the current frame, and
the sum of squared differences (SSD) is simply used as
the similarity measure. It should be noted that match-
ing candidates in the current frame are limited to natural
features within the window W whose center is located
at the position of the matched landmark in the previ-
ous frame. After finishing the landmark tracking pro-
cess, outliers are rejected by the LMedS estimator, and
then, tentative camera parameters in the current frame
M̂t are estimated by solving the PnP problem using the
tracked landmarks. It should be noted that estimation
of tentative camera parameters fails when the number
of tracked landmarks is less than six or the rate of out-
liers is over 50% in our system. In this case, camera
tracking is terminated in current our implementation. In
order to recover the camera parameter estimation pro-
cess after failure, re-initialization techniques suggested
in Reitmayr et al. [24], and Williams et al. [25] can be
employed.

The computational cost for tentative camera parame-
ter estimation Ctrack is as follows:

Ctrack = NtrackFB + ELMedS (3)

where, Ntrack represents the number of tracked land-
marks, B represents the cost of calculating the SSD

for each pair, and ELMedS represents the cost for out-
lier rejection and camera parameter estimation. Tenta-
tive camera parameter estimation can be achieved with a
computational cost lower than that of conventional cam-
era parameter estimation because the matching cost B in
Eq. (3) is much lower than the testing cost A in Eq. (2).

4.2. Landmark Selection Based on Priorities
In this process, the number of landmarks N in Eq. (2)

is reduced using a geometric constraint and assigning
priorities of landmarks. The approach of assigning pri-
orities to landmarks is newly considered in the proposed
method. The priority Pi of the landmark i is defined as
the probability that landmark i is used in the online cam-
era parameter estimation, and it is given as follows:

Pi =
Ei

Di
(4)

where, Ei represents the frequency that the landmark i
is used as the inlier in the camera parameter estimation
process (B-5), and Di represents the frequency that the
landmark i is selected from the database in the landmark
selection process (B-3). In this paper, we assume that in
order to set priorities, the system administrator trains the
system with several videos captured in the target envi-
ronment before the system is used by users.

In this landmark selection process, first, observable
landmarks except for the landmarks tracked in process
(B-2) are selected from the database using a geometric
constraint that is almost the same as the one used in the
previous method. Next, top Nprior confident landmarks
are selected from the observable landmarks. It should
be noted that several landmarks (N′track) have already
been matched in the tentative camera parameter estima-
tion process (B-2) before starting the landmark selection
process. Therefore, in this process, the maximum num-
ber of Nprior is fixed as Nmax, and Nprior is determined
by subtracting the number of tracked landmarks N′track

from Nmax. Using priorities of landmarks, we can effi-
ciently select the small number of landmarks to be used
in the next process (B-4).

4.3. Search for Corresponding Pairs and Camera Pa-
rameter Estimation

This process is basically the same as that used in the
previous method except for the range of search window.
First, selected landmarks are projected onto the input
image using tentative camera parameters M̂t. Next, cor-
responding pairs of landmarks and natural features are
searched within the fixed window W ′, whose center is
located at the projected position in the input image. Us-
ing tentative camera parameters, the window size of W ′
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can be made smaller than that of the process (B-2). Fi-
nally, extrinsic camera parameters are estimated by us-
ing corresponding pairs and tracked landmarks.

The computational cost of new matching process (B-
4) is as follows:

Cpro j = NpriorF
S ′

S
A (5)

where, S and S ′ represent the sizes of windows W and
W ′, respectively. By estimating the tentative camera pa-
rameters, we reduce the number of matching candidates
of natural features by S ′/S .

4.4. Updating Priorities
After finishing the camera parameter estimation, we

update the priorities of landmarks using frequency in-
formation obtained from the result of the camera param-
eter estimation as follows:

Pi =
Eiold + Einew

Diold + Dinew
(6)

where, E and D are frequency information described in
Section 4.2. Subscripts iold and inew denote the past
and current video sequences, respectively.

4.5. Comparison of Computational Cost
The ideal effect of the computational cost reduction

in matching process (B-4) can be computed from Eqs.
(2), (3), and (5) as follows:

Cnew

Cprev
=

Ctrack + Cpro j

Cprev
(7)

=
Ctrack

Cprev
+

Nmax − N′track

N
S ′

S
(8)

where, Cnew is the matching cost in the proposed
method. In this equation, the first term and the sec-
ond term represent the overhead for tentative camera
parameter estimation in the process (B-2) and the ef-
fect of computational cost reduction in the process (B-
5), respectively. In fact, the effect of computational cost
reduction does not perfectly conform with this equa-
tion because of the cost of the overhead in the iteration
process. The actual effect of the cost reduction will be
demonstrated in the experiment.

5. Improvement of the Accuracy of Camera Param-
eter Estimation

This section describes the method for database con-
struction using the dense depth map to improve the ac-
curacy of online camera parameter estimation. In the

offline stage, the dense depth map is obtained by using
the laser range sensor at the spot where the user comes
close to CG objects. In this place, we fuse landmark
information from SfM and the laser range sensor.

5.1. Acquisition of Depth Map and Surface Texture

In this process, 3-D information of the target environ-
ment is acquired using the omnidirectional camera and
the omnidirectional laser range sensor, as shown in Fig-
ure 5. In this scanning process, the geometric relation-
ship Mrc between these sensors is fixed and calibrated
in advance. The depth map corresponding to an omni-
directional image is generated from the range data ob-
tained by the range sensor using geometric relationship
Mrc. It should be noted that the laser range sensor has a
limited measuring range. The obtained depth map lack
information about the sky area. If we simply mask and
ignore these areas, the aperture problem will arise for
landmarks which exist at the boundary between land-
scape and the sky. However, these landmarks are im-
portant to determine the camera posture. To avoid the
aperture problem, in this method, we set infinite depth
values for the sky areas. In practice, the largest region
without depth values in the omnidirectional image is de-
termined as the sky area.

5.2. Acquisition of Landmark Information

Landmark information is generated from the acquired
depth map and the omnidirectional image. First, natu-
ral feature points are detected from the omnidirectional
image using the Harris corner detector [20], and then,
3-D positions of these features are determined from the
depth map. These natural features are registered to the
database as landmarks. The viewpoint dependent in-
formation is processed in the same manner as that in
the previous method: the ground plane is divided into
a grid whose center coincides with the sensor position,
and then, image templates of landmarks are generated
for every grid point, as shown in Figure 6. In practice,
first, a virtual camera is set at the grid point. Next, vis-
ible landmarks at the position of the virtual camera are
determined by using the range data, and then, the depth
value for each pixel on the image template of the land-
mark is obtained from the range data. Finally, pixel val-
ues on the image template are determined by projecting
the omnidirectional image using these depth values. In
the pattern generation process, occluded areas in the im-
age template are set as masked areas in order to exclude
them from consideration during the pattern matching
process (B-4).
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Figure 5: Sensor setup and omnidirectional data.
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Figure 6: Generation of image template by considering local 3-D
structure around landmark.

5.3. Merging of Landmarks from SfM and Laser Range
Sensor

In the proposed method, the two kinds of landmarks
obtained by the SfM (LDBS f M) and the range sensor
(LDBLaser) can be merged seamlessly. However, in the
online process (B-5), the LMedS estimator tends to se-
lect landmarks only from one side. This one-sided se-
lection causes a jitter problem at positions where the
landmarks obtained by both SfM and the range sensor
can be observed. To avoid this problem, we add a new
constraint to the random sampling process (constrained
random sampling). In practice, two different random
sampling processes are executed depending on the situ-
ation.

• If all of the temporal pairs for the LMedS are se-
lected from either LDBS f M or LDBLaser, general
random sampling is used.

• Otherwise, the samples that do not contain either
LDBS f M or LDBLaser are immediately rejected in
the repeating process of LMedS.

By using this strategy, we avoid one-sided selection of
landmarks. The effect of constrained random sampling
will also be demonstrated in the experiment.

6. Experiments

In this experiment, to demonstrate the effectiveness
of the proposed method, first, we compare the compu-
tational cost of this method with that of the previous
method [1]. Next, in order to validate the effectiveness
of combining the landmark database constructed using
SfM and that constructed using the laser range sensor,
the accuracy of the estimated camera parameters is com-
pared to that of the method that uses only SfM-based
database construction. The usefulness of the proposed
method is also demonstrated by applying the proposed
method to some AR applications. In these experiments,
intrinsic camera parameters of the monocular camera
used in the online stage are calibrated in advance using
the Tsai method [26].

6.1. Effectiveness of Computational Cost Reduction

The computational cost is compared with that of the
previous method [1]. We take an omnidirectional se-
quence in the target environment and then the feature
landmark database is constructed using SfM [15] and
an omnidirectional camera (Point Grey Research, Inc.;
Ladybug) in the outdoor environment. Figure 3 shows
the sampled images used for database construction and
the SfM result. In this experiment, about 12400 land-
marks are registered to the database and each landmark
has 8 image templates on average. For the proposed
method, we captured three training videos of the target
environment to determine the priorities of landmarks.
Camera paths of these training sequences are almost the
same as the test sequence. To evaluate the proposed and
previous methods, we also capture another video image
sequence (720 × 480 pixels, progressive scan, 15 fps,
1,000 frames). For a quantitative evaluation, we gener-
ated the ground truth by the estimating camera param-
eters with manually specified correspondences of land-
marks. It should be noted that we have removed several
frames in which the reprojection error of the obtained
ground truth is over 1.5 pixels. Table 1 shows the pa-
rameters for this experiment.

To verify the effectiveness of the proposed method,
the following four methods are compared.

Method A: Previous method [1]

Method B: Proposed method without landmark selec-
tion based on priorities
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Table 1: Parameters in experiment.
Previous method [1] Proposed method

Image template size - 15
in process (B-2) (pixel)

Window size - 120 × 60
W (pixel)

Window size 120 × 60 20 × 20
W′ (pixel)

Angle threshold 15
θ (degree)

Number of grids in 74 × 48
input image

Training data - Three sequences
Initial value of priority - 1/2
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Figure 7: Relation between number of landmarks and failure frames.

Method C: Proposed method without tentative camera
parameter estimation

Method D: Proposed method

In this experiment, first, in order to determine the num-
ber of landmarks to be selected, we compared the rate
of estimation failure. Next, the computational cost of
these methods is compared.

Figure 7 shows the number of failure frames for var-
ious number of selected landmarks in process (B-3).
In this experiment, we deemed the result to be a fail-
ure when the number of corresponding pairs is less
than 6. Methods A and B, which did not use prior-
ities of landmarks, failed to estimate the camera pa-
rameter for several frames when the number of land-
marks was 70 or less. Methods C and D, which use
priorities of landmarks, did not fail when the number
of landmarks was more than 30. From these results,
we determine the number of landmarks as required 80
for the methods A and B and 30 for the methods C and
D. Table 2 shows the processing time for each method
when we used a laptop PC (CPU: Core2 Extreme 2.93
GHz, Memory: 2 GB). For method D, which involved
the estimation of tentative camera parameters and se-

Table 2: Comparison of processing time for one frame (ms).
Method A B C D

Process (B-2) - 26 - 21
Process (B-3) 12 3 2 1
Process (B-4) 316 51 131 15
Process (B-5) 61 16 16 17

Overhead 4 4 4 5
Total cost 393 100 153 59

Table 3: Comparison of accuracy.
Method A B C D

Avg. position error 360 257 231 256
(mm)

Std. dev. position error 528 137 204 181
(mm)

Avg. posture error 0.84 0.95 1.13 0.91
(degree)

Std. dev. posture error 0.71 1.20 1.16 0.91
(degree)

Avg. reprojection error 2.5 2.3 2.1 1.8
(pixel)

lection of landmarks with high priorities, the total com-
putational cost was about six times lower than that of
the method A. As a result, the proposed method can
work at video rate. The computational cost of match-
ing process (B-4) was 21 times lower than that of the
method A. However, Eq. (8) indicates that ideally, the
effect of the computational cost reduction would make
method D over 48 times cheaper than that of the method
A (N = 80,Nprior − N′track ≤ 30, S ′/S = 1/18). This
difference between the ideal and real outcomes is caused
by the cost of overhead. Table 3 shows the accuracy of
each method. From this result, we conclude that meth-
ods B, C, and D can reduce computational cost without
increasing estimation error.

6.2. Effectiveness of Accuracy Improvement

In this experiment, to demonstrate the effectiveness of
combination of the landmark database constructed using
the SfM and that by the laser range sensor, the effective-
ness of pattern compensation by considering local 3-D
structure of the landmark is evaluated and then the accu-
racy of estimated camera parameters is compared to the
method which uses only SfM-based database construc-
tion. The range data is obtained using the omnidirec-
tional laser range sensor (Riegl Inc.; LMS-Z360) and
one omnidirectional sequence is captured in the target
environment. Specifications of this sensor are shown
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Table 4: Specifications of laser range sensor
Measurable range 1 m∼100 m

Measurement accuracy ±12 mm

Measurable angle
Horizontal: 360◦

Vertical: -50◦ ∼ 40◦

Step angle 0.08◦

Figure 8: SfM result.

in Table 4. Figure 5 shows the acquired surface tex-
ture as well as the corresponding depth map, Figure 8
shows a SfM result. The ground plane of the target
environment is divided into 10 × 10 grid points at 1-m
intervals for range sensor based landmark acquisition.
Constructed feature landmark database consists of about
8800 landmarks (LDBS f M) and about 3500 landmarks
(LDBLaser). The video image sequence (720 × 480 pix-
els, progressive scan, 15 fps, 450 frames) captured in
the target environment is used as the input video for the
evaluation of online camera parameter estimation. The
parameters used in online camera parameter estimation
are same as Section 6.1. For the quantitative evalua-
tion, we generated the ground truth in the same manner
as that described in Section 6.1. In this experiment, the
maximum distance between the omnidirectional camera
path and the monocular camera path was about 3-m.

First, to verify the effectiveness of the pattern com-
pensation using the dense depth map, we quantitatively
evaluate the generated image templates of landmarks
using process (A-1.2), which uses sparse depth infor-
mation, and process (A-2.2), which uses dense depth
information by comparing them with ground truth. In
this experiment, the viewpoints for pattern compensa-
tion are provided by estimating camera parameters with
manually specified correspondences of landmarks in in-
put images. Table 5 shows the average and standard
deviation of NCC values between compensated image
templates and image patterns of landmarks in input im-

Table 5: Comparison of normalized cross-correlation value.
Using dense

depth information
Using sparse

depth information
Avg. 0.63 0.47

Std. dev. 0.039 0.052

Ground truth Using sparse depth Using dense depth 

Figure 9: Generated image templates of landmark.
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Figure 10: Corresponded landmarks. Red circles indicate landmarks
measured by SfM. Green circles indicate landmarks measured by
range sensor.

ages for 30 image templates of landmarks. The aver-
age NCC value obtained using the dense depth informa-
tion (0.63) is higher than that obtained using the method
which does not consider the local 3-D structure around
the landmark (0.47). Figure 9 shows the generated im-
age patterns. It is confirmed that the image templates of
landmarks are adequately compensated for by consider-
ing the local 3-D structure around the landmark.

Next, the accuracy of estimated camera parameters
obtained using the database constructed by SfM and the
range sensor (SfM+Range method) is compared to the
accuracy of those obtained by the method that uses only
SfM-based database construction (SfM method). Fig-
ure 10 shows the corresponded landmarks used to es-
timate camera parameters. As can be seen in this fig-
ure, although the SfM method finds a small number of
corresponding pairs of landmarks and feature points for
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Figure 11: Error in position for each frame. Red line indicates result
of proposed method, which uses both SfM and range data. Blue line
indicates the result of the method that uses only Range. Green line
indicates the result of the method that uses only SfM.

the ground part of the images, the SfM+Range method
finds many more such pairs. This is considered to be
due to the pattern compensation using dense 3-D in-
formation. Figure 11 shows error in position for each
frame. The accuracy of estimated camera parameters
which only uses the database constructed by the range
sensor (Range method) is also shown in this figure. It
should be noted that the range method cannot estimate
camera parameters in the entire sequence. The effect
of the SfM+Range can be confirmed because the accu-
racy of the SfM+Range is improved to the same level
of that by the Range method for the places where range
data are available. The average position errors for the
SfM+Range, Range, and SfM methods are 282 mm,
229 mm, and 543 mm, respectively. In this experiment,
the SfM+Range method has used landmarks measured
by the range sensor during frame number 82 to 301.
This result confirms that the SfM+Range method can
improve the accuracy of estimated camera parameters
for most of the frames. This improvement is due to the
accurate matching of corresponded landmarks close to
the user. In addition, the effect of accuracy improvement
of estimated camera parameters has been confirmed in
the generated AR video1. It is observed that when both
kinds of landmarks are used, jitter in the generated video
is suppressed as compared with that in the SfM method.

6.3. Applications
To show the usefulness of the proposed method, we

apply the proposed method to two applications: AR out-

1http://yokoya.naist.jp/research2/LandmarkVideo/

JitterComparison.wmv

Department of 
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Department of 
Biological Science 

University 
Union 

Figure 12: Overhead view of the target environment.

door navigation and AR sightseeing.
AR Navigation
In this application, the feature landmark database for
the campus shown in Figure 12 is constructed by SfM.
Navigation information is manually created and aligned
in advance. In this scenario, the users do not come
close to virtual objects. Thus, we do not use the laser
range sensor. In this experiment, we used a video cam-
era (Sony DSR-PD150) and a laptop PC (CPU: Core 2
Quad 3.0 GHz, Memory: 4 GB). Figure 13 shows the
result of AR navigation. It is confirmed that annota-
tion information is overlaid at geometrically correct po-
sitions2. By using AR for navigation, the system intu-
itively provides navigation information to the user.
AR Sightseeing
There are many dilapidated historical sites worldwide.
In these places, AR applications could enable visitors
to visualize their original appearance of the cultural
heritage. In this experiment, temple ruins in the an-
cient Japanese capital city of Asuka are virtually recon-
structed at its original site. In this scenario, users would
come close to virtual objects. Therefore, a feature land-
mark database is constructed using SfM and the laser
range sensor. In the online stage of this experiment, we
used the same equipment as that used for the AR nav-
igation application. Figure 14 shows the result of the
AR sightseeing application. Virtual objects are over-
laid on the site of the old temple. We have confirmed
that CG objects placed at a position close to the user’s
viewpoint are correctly registered3. The AR sightseeing

2http://yokoya.naist.jp/research2/LandmarkVideo/

result-navi.wmv
3http://yokoya.naist.jp/research2/LandmarkVideo/

result-ARSightseeing.wmv



Takafumi Taketomi, Tomokazu Sato, and Naokazu Yokoya / Computers and Graphics 00 (2011) 1–13 12

In
p

u
t 

im
ag

e
 

A
R

 im
ag

e
 

Figure 13: AR navigation result.
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Figure 14: AR sightseeing result.

application can realize a virtual historical experience.

7. Conclusion

In this paper, we proposed a real-time and accurate
camera parameter estimation method using the feature
landmark database for implementing outdoor AR ap-
plications. To achieve real-time processing, we effi-
ciently reduced the number of matching candidates of
landmarks and natural features by using tentative cam-
era parameter estimation and priority-based landmark
selection, and confident matching candidate selection
affected the improvement of the accuracy of camera pa-
rameter estimation. The accuracy of the estimated cam-
era parameters is improved using the dense depth map
obtained by a laser range sensor at the spot where vir-
tual objects are placed near the user’s viewpoint. Im-
portance of close landmarks is quantitatively validated
through the experiment. The usefulness of the pro-

posed method was demonstrated by applying the pro-
posed method to some AR applications.

Currently, the feature landmark database must be re-
built when appearance of the scene is partially or com-
pletely changed e.g. by construction of new buildings
and season change. Our next challenge in this project is
to develop a strategy for updating the landmark database
using images captured by a user’s camera. This will re-
duce the cost of constructing and maintaining the land-
mark database.
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