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ABSTRACT

In this paper, we propose a novel surface completion method
to generate plausible shapes and textures for missing regions
of 3D models. The missing regions are filled in by minimiz-
ing two energy functions for shape and texture, which are both
based on similarities between the missing region and the rest
of the object; in doing so, we take into account the positive
correlation between shape and texture. We demonstrate the
effectiveness of the proposed method experimentally by ap-
plying it to two models.

Index Terms— Surface Completion, Shape and Texture,
Energy Minimization

1. INTRODUCTION

Surface completion is a technique for filling in missing re-
gions in 3D models caused by sensing errors and occlusions
in measuring target objects. Surface completion methods can
be broadly classified into two categories: one uses informa-
tion around missing regions and the other uses exemplars in
the rest of the object, referred to as data region. The for-
mer methods [1–4] fill in missing regions with smooth surface
patches using partial differential equations or signed distance
field. These methods are effective for small gaps but can-
not generate complex shapes. Therefore, the latter methods
such as [5–10] have recently been developed so as to generate
complex shapes in missing regions.

A number of surface completion algorithms in recent
years have dealt with both shape and color, rather than shape
alone [6–8]. These methods calculate the similarities of
shape and color between missing and data regions, and gen-
erate complex shape and texture by copying the similar patch
to the missing region. For instance, in [6], one similar patch
whose size is almost the same as a missing region is required
to exist in the model. In [7, 8], similar local patches are
successively copied to the missing region from the outer to
the inner part; as such, a discontinuous surface may be gen-
erated on the seam in the completed model. Also, sample
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shape and color are selected from the same position in these
methods. While there is correlation between shape and color
of many objects, similar shapes do not necessarily always
have the same texture. Therefore, unnatural shape and color
could potentially be generated due to the limited available
exemplars.

In this paper, we propose a surface completion method by
taking into account shape and texture simultaneously. Specifi-
cally, we minimize two energy functions for shape and texture
by extending our previous energy function in [9,10], which is
only based on the shape similarity between missing and data
regions. In this paper, shape and color in missing regions
are determined as a global solution by minimizing the two
energy functions in an iterative fashion. In addition, sample
shapes and textures can be selected from different positions,
while the positive correlation between shape and texture is
taken into account. Target models in this research consist of
vertices, triangles and texture images where the correspon-
dence of coordinates between vertices and texture images is
assumed to be known.

2. PROPOSED APPROACH

Our surface completion process can be described as follows:
(a) the user manually selects missing regions to be repaired in
a model; (b) initial position and color are assigned to vertices
and triangles in the missing regions; (c) the position and color
of vertices in the missing region are updated iteratively so as
to minimize the two energy functions. Section 2.1 describes
the energy function, and Section 2.2 describes the minimiza-
tion of the energy functions.

2.1. Energy functions for shape and texture similarity

As illustrated in Fig. 1, a 3D model is first divided into re-
gion Ω′ which includes missing region Ω selected by the user,
and data region Φ which is the remainder of the object. Ω′ is
determined so that spherical patch Api

with radius l and cen-
tral vertex pi ∈ Ω′, includes at least one vertex in region Ω.
Two energy functions, Es for shape and Et for texture, are
defined based on the weighted sum of shape similarity SSDs

and texture similarity SSDt between vertices in region Ω′ and
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Fig. 1. Missing and data regions in a 3D model.

surface in data region Φ. In doing so, the positive correlation
between shape and texture is taken into account as follows:

Es =
∑

pi∈Ω′
wpi

(SSDs(pi,pm)+αSSDt(pi,pm))/
∑

pi∈Ω′
wpi

,

(1)
Et =

∑

pi∈Ω′
λpi

(SSDt(pi,pn)+βSSDs(pi,pn))/
∑

pi∈Ω′
λpi

,

(2)
In the above energy functions, there are four kinds of vari-
ables: vertex’s 3D position pi, intensity I(pi) of vertex pi,
position pm of similar shape, and position pn of similar tex-
ture in region Φ corresponding to vertex pi. Weight wpi

is set
to 1 if pi ∈ Ω′∩Ω because the positions of vertices in this re-
gion are known and fixed; otherwise wpi

is set to c−d where
d is the minimum number of links from all vertices on the
boundary of Ω to vertex pi, and c is a positive constant; this
is because the confidence level is higher for position of ver-
tices near the boundary than those in the center of the miss-
ing region. Weight λpi

is defined in a similar way as wpi
.

Weights α and β are the relative importance of shape versus
texture similarity in searching for similar shape and texture.
The minimization is done with respect to all the vertices in Ω.
Eqs. (1) and (2) are normalized with respect to sum of weights
because the weight of each vertex changes in the energy min-
imization process. In the following, the similarity measures
SSDs and SSDt are described in detail.

As shape similarity SSDs, we employ the same measure
as our previous method [10]. Concretely, the surface around
pj in data region Φ is aligned to vertices around pi in Ω′

so that 3D position and basis vectors of vertex pj overlap
those of vertex pi as shown in Fig. 2. The basis vectors are
determined using directions of normal and principal curva-
tures [10]. We refer to the normal basis vector of a vertex as
its ”normal vector”. SSD(pi,pj) is computed as the sum of
distances between vertices in spherical patch Api

with radius
l and central vertex pi ∈ Ω′, and the aligned surface around
pj ∈ Φ as follows:

SSDs(pi,pj) =
∑

pk∈Api

‖ pk − h(pj ,pi,pk) ‖2
N(Api

)
, (3)

where h(pj ,pi,pk) is the 3D position of the intersection of
the aligned surface with the normal line for vertex pk ∈ Api

.
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Fig. 2. Alignment of vertices and surface for similarity mea-
sure of shape and texture.

By normal line for pi, we mean the line passing through pi in
the direction of normal vector for pi. N(Api

) is the number of
vertices in spherical patch Api

. As shown in Fig. 2, intuitively
SSD(pi,pj) represents the distance between all neighboring
points to pi, namely pk, and their projection onto the aligned
surface corresponding to point pj in the data region.

Similarly, texture similarity SSDt is defined as the sum of
difference in color between vertices in patch Api

and texture
on aligned surface around pj as follows:

SSDt(pi,pj) =
∑

pk∈Api

‖ I(pk)− I(h(pj ,pi,pk)) ‖2
N(Api

)
, (4)

2.2. Energy minimization

After initializing vertices’ positions and colors in the missing
region as in step (b), they are iteratively updated in step (c)
so as to minimize Es and Et jointly. Step (c) consists of five
processes. In the first three processes, we calculate the opti-
mal positions of vertices in Ω so as to minimize Es, and in
the second two processes, we calculate the optimal colors of
vertices in Ω so as to minimize Et. Specifically, the following
processes are iterated until convergence: (c-1) parallel search
for similar shape patches; (c-2) parallel update of positions of
all vertices in Ω; (c-3) inserting and merging of vertices in Ω;
(c-4) parallel search for similar texture patches; (c-5) parallel
update of colors of all vertices in Ω.

In practice, the update of vertex positions for minimiz-
ing Es influences energy Et and vice versa. However, such
influences are decreased with iterations as each energy term
converges. In the following subsections, each process is de-
scribed in more detail.

2.2.1. Minimizing energy for shape

This subsection describes the method for minimizing energy
Es for shape, covering processes (c-1) through (c-3). In pro-
cess (c-1), a data region is searched for the most similar shape
patch keeping positions and colors of vertices in Ω fixed. The
position p̂i of the shape patch most similar to the patch around



pi ∈ Ω′ is determined by the following equation:

p̂i = argmin
pm∈Φ

(SSDs(pi,pm) + αSSDt(pi,pm)). (5)

Here, correlation between shape and texture is taken into ac-
count by calculating not only shape similarity but also texture
similarity.

In process (c-2), the positions of all vertices in the miss-
ing region are updated in parallel in the similar way to [10].
In the following, we briefly describe the method for calculat-
ing the position of vertex pi when the position of the most
similar shape patch is known. Here, SSDt in Es can be ig-
nored because colors of vertices are fixed. Energy Es can be
decomposed into element energy Es(pi) (∀pi ∈ Ω) which
includes only position pi as a parameter:

Es(pi) =
∑

pk∈Api

wpk

N(Api
)
‖ pi − h(p̂k,pk,pi) ‖2 . (6)

The relationship between energy Es and element energy
Es(pi) can then be expressed as follows:

Es =
∑

pi∈Ω

Es(pi) + C, (7)

where C is constant denoting the energy for the vertices in re-
gion Ω∩Ω′; this is because the positions of vertices are fixed
and known in this region in the process (c-2). Our approach to
minimize Es is to minimize each element energy Es(pi) inde-
pendently. To do so, we note in Fig. 3 that all the correspond-
ing points h(p̂k,pk,pi) (∀pk ∈ Api

) exist on the normal line
for vertex pi because of the definition of h(p̂k,pk,pi). There-
fore, assuming the normal vector of pi does not change after
updating the positions of neighboring points to pi, the posi-
tion pi that minimizes Es(pi) can be approximated as fol-
lows:

pi ≈
∑

pk∈Api

wpk
h(p̂k,pk,pi)/

∑

pk∈Api

wpk
. (8)

In practice, the value in Eq. (8) is only an approximate so-
lution to minimize Es(pi) because the normal direction does
change due to the update of the positions of vertices. Nev-
ertheless, a reasonably good solution can be obtained as the
energy converges because the change in the normal vector be-
comes smaller as the energy converges.

In process (c-3), the spatial distribution of vertices in Ω is
made uniform by inserting and merging vertices while taking
into account their density; this is because the update of ver-
tex positions in process (c-2) biases the spatial distribution.
In particular, we employ upper and lower thresholds for the
length of a side of a triangle. If a side is longer than the upper
threshold, a vertex is added to the midpoint of the side. The
color of the new vertex is calculated by averaging colors of
two vertices on the side. If a side is shorter than the lower
threshold, two vertices on the side are merged and the new
vertex is put on the midpoint of the side. The color is the
average of colors of the two vertices.
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Fig. 3. Corresponding points on the normal line for vertex pi.

2.2.2. Minimizing energy for texture

After the update of vertices’ positions in Ω, colors of vertices
in Ω are updated so as to minimize energy Et for texture,
covering processes (c-4) and (c-5). In process (c-4), a data
region is searched for the most similar texture patch keeping
positions and colors of vertices in Ω fixed. Here, correlation
between shape and texture is taken into account as well as
searching for similar shapes. The position p̃i of the texture
patch most similar to the texture around pi ∈ Ω′ is determined
by the following:

p̃i = argmin
pn∈Φ

(SSDt(pi,pn) + βSSDs(pi,pn)). (9)

In process (c-5), the color of all vertices in the missing re-
gion are updated in parallel using the same idea as in process
(c-2). Here, SSDs in Et can be ignored. Energy Et can also
be decomposed into element energy Et(pi) as follows:

Et(pi) =
∑

pk∈Api

λpk

N(Api
)
‖ I(pi)− I(h(p̃k,pk,pi)) ‖2 .

(10)
Therefore, color I(pi) that minimizes Et(pi) is calculated as
follows:

I(pi) =
∑

pk∈Api

λpk
I(h(p̃k,pk,pi))/

∑

pk∈Api

λpk
. (11)

2.2.3. Coarse-to-fine approach

In order to efficiently complete the missing regions and avoid
local minima, a coarse-to-fine approach is employed for en-
ergy minimization. Here, every time the energy converges, ra-
dius l of spherical patch Api

is decreased, and the number of
vertices in region Ω′ used for calculating energy is increased
by changing the thresholds in process (c-3) for density of ver-
tices. In addition, a pyramid for the texture image is generated
offline and the resolution of a texture image is increased from
the coarse to fine.

3. EXPERIMENTS

To demonstrate the effectiveness of the proposed method, we
have applied the method to two models: an indoor model
with 453,281 vertices which is created using indoor localiza-
tion and modeling algorithm [11] as shown in Fig. 4(a), and a



(a) Indoor model with holes

(b) Completed model

(c) Close-up of a hole (d) Close-up of a completed
hole

Fig. 4. Completion for a indoor model with holes.

small bowl model with 4,680 vertices as shown in Fig. 5(a).
A missing region of the bowl model is generated manually. In
the experiments, the average position and color of the bound-
ary vertices of the missing region are used as an initial ver-
tex’s position and color in the missing region. We use a PC
with Core i7 1.6GHz CPU and 8GB of memory.

As for the completion of the indoor model, the entire
model is divided into multiple partial sub-models each with
only one hole. Then each hole is filled in individually.
Fig. 4(b) shows the completed model, and Figs. 4(c) and
4(d) show the close-up of one of the holes before and after
completion. From these figures, we can confirm that natural
shapes and textures are generated in the holes. It took 13,868
seconds to complete the all holes for this model.

As for the completion for the bowl model which has a
smooth curved surface and bumps along the texture edges, we
show two kinds of results using different weights β for SSDs

in Et. In the completed model of Fig. 5(b) with β = 0.5,
texture edges are generated in the missing region. On the
other hand, plausible edges are not generated in the completed
model of Fig. 5(c) with β = 0. From this difference in results,
we can confirm that taking into account correlation between
shape and texture similarity is effective. However, the gener-
ated texture is slightly blurred because the resolution of tex-
ture is higher than the resolution of vertices. Finally, Fig. 5(d)
shows the completed model in Fig. 5(b) without texture. As
seen, natural shapes are generated in the missing region. It
took 512 seconds to complete the hole for this model.

4. CONCLUSIONS

In this paper, we have presented a novel method for surface
completion of shape and texture based on energy minimiza-

(a) Bowl model with a hole (b) Completed model (β =
0.5)

(c) Completed model (β = 0) (d) Completed model (b) with
no texture

Fig. 5. Completion for a bowl model with a hole.

tion and demonstrated its effectiveness experimentally on two
datasets. Future work involves increased resolution of gener-
ated texture. In addition, our method can be applied to 3D
models for large environments such as outdoor scenes.
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