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Camera Pose Estimation for an Image Sequence

with External References∗

Hideyuki Kume

Abstract

Structure-from-Motion (SfM) is one of the key techniques developed in the

field of computer vision, and has been used in many applications such as three-

dimensional reconstruction, robot navigation, and augmented reality. The most

significant problem in SfM is the accumulation of estimation errors in a long image

sequence. Although many types of methods for reducing accumulative errors have

been proposed, SfM essentially cannot be free from accumulative errors unless

certain external references (e.g., GPS, aerial images, or feature landmarks) are

given.

To treat various scenes for which the appropriate external references are not

unique, this thesis proposes camera pose estimation methods employing the fol-

lowing three types of references: (1) GPS, (2) aerial images, and (3) a 3D point

database created by SfM. GPS and aerial images are already available for most

outdoor scenes around the world. To reduce the accumulative errors in SfM, we

propose bundle adjustment (BA)-based methods that can globally optimize the

camera poses using GPS and aerial images. Some applications of robot naviga-

tion and augmented reality require estimating the camera poses along a previously

taken route. For such applications, we propose an online camera pose estimation

method using a 3D point database created by SfM from previously captured

images.

In methods using GPS, extended BA that fuses SfM and GPS data has been

previously proposed, and it works properly if the GPS data are acquired accu-

rately. However, because existing methods do not consider the confidence of GPS
∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1061008, March 13, 2014.
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positioning, the accuracy of estimated camera positions depends largely on the

confidence of the GPS positioning data. To solve this problem, we add weighting

coefficients depending on the GPS positioning confidence to the energy function

for extended BA.

No existing method uses aerial images as external references in BA. We pro-

pose a new SfM pipeline that uses feature matches between ground-view and

aerial images. To find proper matches from unreliable matches, we newly pro-

pose RANSAC-based outlier elimination methods for both the feature matching

and BA stages.

As a method using a 3D point database created by SfM, we estimate the

camera poses online from the 2D positions of the feature points in the current

image and their 3D positions obtained from the database. The challenge here is

how to accurately obtain the 3D-2D correspondences. To this end, the proposed

method identifies the database image that is most similar to the current image

by considering both topological information and image features.

The usefulness of the proposed methods was quantitatively confirmed through

experiments using data obtained in real environments.

Keywords:

camera pose estimation, structure-from-motion, bundle adjustment, GPS, aerial

image, 3D point database
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Chapter 1

Introduction

Camera pose estimation for an image sequence has been widely investigated and

used for many computer vision and virtual reality applications, including the

following.

• Augmented reality [1, 2]

• Robot navigation [3]

• Match move [4]

• 3D reconstruction [5–7]

• Free-viewpoint image generation [8, 9]

• Super-resolution [10]

• Video stabilization [11]

Figure 1.1 shows some example applications. For augmented reality and match

move, which are applied in navigation systems, educational materials, and film

making, camera pose estimation is required for superimposing virtual objects

into geometrically correct positions. To virtualize a real environment, 3D recon-

struction and free-viewpoint image generation techniques have been thoroughly

investigated, and are based on the camera pose information used to integrate

many input images. One of the requirements of robot navigation is the ability

to determine the robot’s location, which can be realized through camera pose
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(a) Augmented reality [1] (b) 3D reconstruction [7]

Free-viewpoint image Novel camera position (red)

(c) Free-viewpoint image generation [9]

Input image Super-resolved image

(d) Super-resolution [10]

Figure 1.1: Applications of camera pose estimation.
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estimation. In this manner, camera pose estimation is one of the fundamental

tasks in computer vision, virtual reality, and robotics applications.

For estimating camera poses, Structure-from-Motion (SfM) methods, which

estimate camera poses and 3D positions of feature points from an image sequence,

are frequently used. The most significant problem of SfM is the accumulation of

estimation errors in a long image sequence. Although many types of methods

for reducing accumulative errors have been proposed, SfM methods essentially

cannot be free from accumulative errors unless certain external references (e.g.,

GPS, aerial images, or feature landmarks) are given. In addition, SfM without

external references can only be used to estimate relative camera poses and not

absolute camera poses, which are required for certain applications such as robot

navigation.

To treat various scenes for which the appropriate external references are not

unique, this thesis proposes camera pose estimation methods employing the fol-

lowing three types of references: (1) GPS, (2) aerial images, and (3) a 3D point

database created by SfM. GPS and aerial images are already available for most

outdoor scenes around the world. To reduce accumulative errors in SfM, we

propose bundle adjustment (BA)-based methods that can globally optimize cam-

era poses using GPS and aerial images. Some applications of robot navigation

and augmented reality require estimating the camera poses along a previously

taken route. For these applications, we propose an online camera pose estima-

tion method using a 3D point database created by SfM from previously captured

images.

Various methods for estimating camera poses have been proposed. In this

chapter, we first review existing camera pose estimation methods with and with-

out external references. We then describe the contributions of this thesis against

these existing methods. Finally, we describe the remaining organization of this

thesis.
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1.1. Camera Pose Estimation without External

References

This section describes SfM methods that estimate camera poses and 3D positions

of feature points from the correspondences of feature points among input im-

ages. We first review the SfM methods in terms of their estimation approaches.

Techniques used to reduce accumulative errors in SfM are then detailed.

1.1.1 Structure-from-Motion

Many SfM methods have been proposed in the fields of computer vision and

robotics [12–14]. These methods can be classified as follows based on their esti-

mation approaches.

• Epipolar geometry

• Factorization

• Filtering

• Local bundle adjustment

In the following, we describe the characteristics of these methods.

Epipolar geometry

The epipolar geometry represents the geometric relationship among two, three,

and four cameras [12]. Because the epipolar geometry for three and four cameras

can be considered as combination of the epipolar geometry for two cameras, the

epipolar geometry for two cameras has been thoroughly studied.

The relationship of the 2D positions of the corresponding points between

two cameras is represented using a fundamental matrix. If there are eight or

more correspondences, the fundamental matrix can be computed using the eight-

point algorithm [15]. Hartley [16] proposed the normalized eight-point algorithm

to achieve a robust estimation against image noises. Because the rank of the

fundamental matrix is two, a fundamental matrix can be computed through seven

correspondences using a rank constraint [17].
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If the intrinsic camera parameters are known, a fundamental matrix can be

converted into an essential matrix, from which the relative camera pose can be

computed. In addition, methods that directly compute an essential matrix from

five correspondences have been proposed [18–21]. If the intrinsic camera pa-

rameters are unknown, self-calibration methods that simultaneously estimate the

relative pose and intrinsic parameters are required. A simple method [12] cal-

culates the focal length from a fundamental matrix. Moreover, methods that

estimate the relative pose and focal length from six correspondences have also

been proposed [20,22].

These epipolar-geometry-based techniques are useful for certain applications

such as 3D reconstruction from two images. More importantly, these methods

can be used as initialization procedures in the filter-based and local-BA-based

methods described later in this thesis.

Factorization

Factorization [23] is a method for linearly estimating the camera poses and 3D

positions of feature points from the 2D correspondences of the feature points

among the input images. Factorization was originally developed for orthographic

cameras [23], and was later extended to paraperspective cameras [24], projective

cameras [25] and perspective cameras [26].

One disadvantage of factorization methods is that they require a complete set

of 2D correspondences, i.e., each point must be visible in each frame. Although

methods that can deal with missing components of correspondences have been

proposed [27, 28], they require iterations to solve this problem. Moreover, it

is difficult for factorization methods to handle incorrect correspondences, which

often occur for long video sequences.

Filtering

To estimate the camera poses and 3D positions of feature points sequentially for

an image sequence, stochastic filters are sometimes used. Davison et al. [3] pro-

posed a method based on the extended Kalman filter (EKF) that can deal with

the non-linearity of perspective projections in the observation model. Civera

et al. [29] proposed RANSAC for EKF-based SfM to achieve robust estimation

5



against incorrect correspondences of 2D feature points. Eade and Drummond [30]

proposed a method based on FastSLAM using the Rao-Blackwellized particle fil-

ter, which is more accurate than EKF SLAM in the field of robotics. One problem

of filter-based SfM is that it has difficulty handling large-scale environments with

many feature points. To solve this problem, Eade and Drummond [31] proposed

a method for dividing large-scale environments into smaller sub-spaces.

These filter-based methods tend to be employed in real-time applications such

as robot navigation and augmented reality because they can estimate camera

poses with low computational cost. However, Strasdat et al. [32] showed that the

local-BA-based methods described later in this thesis can achieve a more accurate

estimation than filter-based methods.

Local Bundle Adjustment

BA optimizes the camera poses and 3D positions of feature points so as to non-

linearly minimize the sum of the reprojection errors. BA was originally used as

the final optimization process for SfM methods owing to its high computational

costs.

Thanks to recent advances in the computational power of PCs, some methods

[1,33–40] have employed BA in the incremental processing of an image sequence

by limiting the range of BA, which is called local BA. These methods first estimate

the initial camera poses and 3D positions of the feature points using the epipolar

geometry. When each new frame is input, these methods then (1) estimate the

camera pose by solving the PnP problem, (2) estimate the 3D positions of the

feature points through triangulation, and (3) apply local BA.

As an initial attempt, Nister et al. [33] proposed a real-time method that

employs this incremental framework except for applying local BA. Zhang and

Shan [34] and Engels et al. [35] employed local BA that uses only a small number

of the most recent images. Mouragnon et al. [36] and Klein and Murray [1]

employed key-frames that are spatio-temporally distant from each other, instead

of the most recent frames. To deal with large-scale environments, Holmes and

Murray [37] proposed a method for dividing the target environments into small

sub-spaces. In addition, methods that consider environmental changes [38,39] and

a rolling shutter camera [40] have been proposed. As mentioned in the previous

6



(a) (b)

Figure 1.2: SfM from community photos [41].

section, Strasdat et al. [32] showed that local-BA-based methods can achieve a

more accurate estimation than filter-based methods.

Snavely et al. [41] proposed a local-BA-based method that can deal with

unordered images and applied their method to community photos downloaded

from the Internet. Figure 1.2 shows example results of SfM from community

photos. Because community photos include a significant number of images, the

computational cost becomes quite expensive. To solve this problem, as with key-

frame approaches, Snavely et al. [42] selected a smaller number of images for the

original estimation and folded in the remaining images at the very end. Wu [43]

developed VisualSFM, a state-of-the-art implementation of local-BA-based SfM

that can handle unordered images as well as image sequences.

1.1.2 Techniques to Reduce Accumulative Errors

Since SfM methods essentially suffer from accumulative errors owing to their

incremental manner, techniques to reduce accumulative errors have also been

investigated and applied. Such techniques are based on BA and loop closing.

Bundle Adjustment

BA is a procedure for optimizing camera poses and 3D positions of feature points

so as to non-linearly minimize the sum of squared reprojection errors. BA is the

most accurate way to address the SfM problem because BA can be considered

as the maximum likelihood estimation when errors in the 2D positions of the

7



(a) Image of scene (b) Before BA (c) After BA

Figure 1.3: Example of the effectiveness of BA [45].

correspondences can be assumed to be normally-distributed [44]. Figure 1.3 shows

an example of the effectiveness of BA.

BA requires solving the large non-linear least squares problem and is compu-

tationally expensive. To reduce the computational cost, some methods [44–47]

exploit the sparsity of BA, i.e., each reprojection error depends only on one cam-

era pose and one 3D position of a point.

On the other hand, Hedborg et al. [40] proposed BA considering a rolling

shutter model. To improve the robustness against the outliers of the correspon-

dences, Dai et al. [48] proposed BA using the L1 norm instead of the squared

(L2) norm. Implementations of BA have been recently made available [49–52].

Loop Closing

As shown in Figure 1.4, loop closing is a technique for reducing accumulative er-

rors by detecting loops, i.e., camera returns to a position where the camera passes

before. Once the loops are detected, the accumulative errors can be reduced by

the BA. The problem then is how to detect the loops. For offline SfM methods,

it is easy to detect loops by matching the images with each other. In contrast,

for online real-time SfM methods, this is relatively difficult owing to the real-time

constraint. For efficient loop detection, Angeli et al. [53] employed bag-of-visual-

words, which are often used for image retrieval, and Strasdat et al. [54] employed

a key-frame approach. In addition, Williams et al. [55] compared loop closing

techniques and summarized their characteristics.

As an approach related to loop closing, Cohen et al. [56] exploited symme-

tries that often exist in man-made structures, e.g., two identical wings of a large

8



(a) Before loop closing (b) After loop closing (c) Aerial view of courtyard

Figure 1.4: Loop closing for the trajectory around a courtyard [55].

building complex. They employed BA by considering the detected symmetries to

reduce accumulative errors (Figure 1.5).

Although these loop closing techniques can reduce accumulative errors, the

applicable environments and movements of a camera are limited.

1.2. Camera Pose Estimation with External Ref-

erences

As described in the previous section, while many SfM methods have been pro-

posed, they suffer from accumulation of estimation errors in a long image se-

quence. Although loop closing techniques can reduce accumulative errors, the

applicable environments and camera movements are limited, and SfM methods

cannot be free from accumulative errors unless certain external references are

provided.

This section reviews camera pose estimation methods using external refer-

ences. These external references can be classified into the following categories.

• Sensors

• Pre-knowledge of the target environments
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(a) SfM reconstruction

(b) Estimated similarity transformations

(c) Result

Figure 1.5: BA exploiting symmetry [56].

– Fiducial markers

– Image databases

– 3D models

– 3D point databases

– Aerial images

– Road maps

In the following, we describe the characteristics and problems of methods using

external references.

1.2.1 Sensors

Sensors used for estimating camera poses can be classified into two types: (1) sen-

sors that measure relative poses, such as odometry, and (2) sensors that measure

absolute poses, such as RFID and GPS.

10



Measuring Relative Poses

Sensors that measure relative poses, such as odometry, can estimate accurate

poses in a short period of time. Eudes et al. [57] and Michot et al. [58] proposed

methods fusing odometry estimates into SfM to reduce the accumulation of errors

in the scale parameters. Michot et al. [58] also proposed a method using a gyro-

scope to reduce the accumulation of errors in the posture parameters. However,

sensors that measure relative poses also suffer from accumulative errors over long

periods of time. Thus, it is difficult for these sensors to remove accumulative

errors in a long image sequence.

Measuring Absolute Poses

To measure absolute poses, GPS and other kinds of infrastructure sensors such

as RFID and infrared beacon can be used.

Some methods estimate camera poses directly from sensors. Tenmoku et

al. [59] used RFID and infrared beacons (Figure 1.6(a)) to measure absolute

poses in an indoor environment. They also used a pedometer to estimate the

relative poses in cases when the RFID and infrared beacons cannot be used.

Piekarski et al. [60] used a backpack with GPS and an Inertial Measurement

Unit (IMU) (Figure 1.6(b)) to obtain camera poses in an outdoor environment.

Kourogi et al. [61] proposed a method using RFID, GPS, and odometry to handle

both indoor and outdoor environments. Methods for estimating camera poses

directly from sensors are robust against rapid camera movements. However, for

vision applications such as 3D reconstruction and augmented reality, it is difficult

for these methods to achieve pixel-level registration owing to calibration errors

between sensors and the camera.

Some methods fuse sensors into SfM to reduce the accumulative errors. Ra-

machandran et al. [62] proposed an optimization procedure based on reprojection

errors and the direction of gravity measured by inertial sensors. Although this

method produces better solutions than ordinary BA, it is difficult to reduce the

accumulation of errors in the position and scale parameters.

In outdoor environments, some methods use GPS together with SfM owing

to its availability. These methods can be classified in terms of their fusion type

as follows.
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Infrared beacons RFID tags and a tag reader

(a) Positioning infrastructures [59]

(b) Backpack including GPS and IMU [60]

Figure 1.6: Sensor examples.

• Epipolar-geometry-based method [63]

• Fitting-based methods [64–66]

• Filter-based methods [67–69]

• BA-based methods [70–73]

Carceroni et al. [63] proposed a method for estimating the essential matrices

from the correspondences of the 2D points and given camera positions using GPS.

Like the SfM methods without references described in the previous section, this

method is useful for the initialization of BA-based methods.

Fitting-based methods [64–66] fuse GPS data into SfM by fitting the camera

positions estimated by SfM to those by GPS using a similarity transform. Al-

though Bok et al. [65] and Wei et al. [66] employed local fitting, the accumulative

12



errors cannot be removed through a similarity transform because errors are not

uniformly accumulated in SfM.

Filter-based methods [67–69] tend to be employed for real-time applications

because GPS and vision data can instantly be fused from the previous state and

the current measurement, for example, using the Kalman filter. One problem of

filter-based methods is the difficulty of global optimization owing to the sequential

updating strategy of the filter design.

Some methods [70–73] employ extended BA that minimizes the energy func-

tion defined as the sum of reprojection errors and the penalty term of the GPS.

The extended BA can globally optimize the camera poses, which works fine if

GPS data are accurately acquired. However, the accuracy of estimated camera

positions depends largely on the confidence of GPS positioning data because ex-

isting extended-BA methods do not consider the GPS positioning confidence, and

the error of GPS positioning easily grows to a level of 10 [m] in urban areas.

1.2.2 Fiducial Markers

Fiducial markers are artificial 2D objects whose appearances are designed to be

easily determined through image processing techniques. Once fiducial markers

are determined, camera poses in the marker coordinate system can be estimated

by solving the PnP problem. Kato and Billinghurst [74] proposed one of the

most famous camera pose estimation methods based on fiducial markers called

ARToolKit (Figure 1.7(a)). This method is simple and useful, especially for

augmented reality applications. However, to estimate the camera poses in large-

scale environments using fiducial markers, many markers should be installed in

the environment, which requires significant manual intervention and results in a

disturbance in the scenery. To avoid disturbing the scenery, invisible markers [75]

(Figure 1.7(b)) and markers designed to blend in with the scenery as wall paper

[76] (Figure 1.7(c)) and posters [77] (Figure 1.7(d)) were proposed. However, the

problem of manual intervention still remains.
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(a) ARToolKit marker [74]

Capturing without a flash Capturing with a flash

(b) Invisible markers [75]

(c) Wall paper [76] (d) Posters [77]

Figure 1.7: Examples of fiducial markers.

1.2.3 Image Databases

As shown in Figure 1.8, the image database consists of images and their cam-

era poses estimated beforehand by sensors or SfM. Methods utilizing an image

database [78–89] estimate camera poses by identifying the database image that

has the most similar appearance to the current image. These methods can be

classified into methods for a single image and methods for an image sequence.

For methods using a single image, Wang et al. [78] proposed a method using

vocabulary trees [79], which is an efficient technique for image retrieval, to identify

the most similar image. After identifying the most similar database image, some

methods [78,80,81] use epipolar geometry to estimate the relative poses between

the current image and the identified database image. Through recent advances in

image retrieval techniques and community photos whose camera poses are tagged
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(a) Positions of images (b) Examples of images

Figure 1.8: Example of an image database [88].

by sensors, this approach can handle environments from the city scale [82, 83]

up to the entire planet [84]. In addition, for community photos without pose

information, Kalantidis et al. [85] proposed a method to automatically determine

landmarks using Wikipedia [wikipedia.org].

For methods using an image sequence, the methods using a single image de-

scribed above can be used by applying the particular method to each image of

the image sequence. However, estimated camera poses may change discontin-

uously between successive images because each image is treated independently.

Therefore, the methods for an image sequence consider spatio-temporal infor-

mation between successive images. Yagi et al. [86] created a route panorama

from database images. The camera poses are then continuously estimated by

tracking the image pattern on the route panorama that is similar to the current

image through the use of the active contour model. Some methods [87–89] use

a topological graph to identify the database image that is the most similar to

the current image by considering the spatio-temporal connection of the database

images. Badino et al. [88] fused metric-scale information into a topological graph.

Vaca-Castano et al. [89] used street-view images available on the Internet, such as

from Google Street View [maps.google.com/streetview], as database images.

These methods utilizing an image database [78–89] require the image database

to be prepared beforehand, which is costly. Although community photos and

street-view images can be used as a database, the available areas are still limited
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Comport et al. [90] Oikawa et al. [94]

(a) Wire-frame models

(b) Textured models [92]

Figure 1.9: Examples of 3D models.

to famous landmarks and large cities. However, preparing a database is accept-

able for certain applications in which the camera iteratively passes along the

same route. Additionally, these methods are efficient for a camera that follows a

previously taken route by considering the spatio-temporal information.

1.2.4 3D Models

Three-dimensional models of scenes such as wire-frame models (Figure 1.9(a)) and

textured models (Figure 1.9(b)) are used as external references. Some methods

[90–94] estimate camera poses directly from 3D models by matching the features

between input images and 3D models. Comport et al. [90] used wire-frame models

of scenes. To improve the robustness of the matching, texture information is also

used [91–93] along with wire-frame models. On the other hand, Oikawa et al. [94]
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addressed the problem of tracking textureless rigid curved objects using quadrics

to approximate the object contours.

Some methods fuse 3D models into SfM [95–98]. These methods can reduce

the accumulative errors in SfM using the following 3D models.

• Wire-frame models [95]

• Plane-based models [96,97]

• Textured 3D models [98]

• Digital elevation models (DEM) [97]

Approaches fusing 3D models into SfM can be classified into switching [95, 96]

and extended BA [97, 98]. Bleser et al. [95] and Lothe et al. [96] simply switch

the SfM and model-based estimation depending on the availability of the models.

As with methods using GPS with SfM, some methods [97, 98] have employed

extended BA because it can globally optimize the camera poses using sparsely

acquired information on the camera poses estimated from the models.

One disadvantage of 3D-model-based methods is that the manual intervention

required to create the 3D models is costly. Although some models are already

available in the GIS database [96,97], the available areas are still limited to large

cities.

1.2.5 3D Point Databases

As shown in Figure 1.10, some methods [99–108] employ a database that consists

of 3D points and their image features and estimate camera poses by matching the

feature points between input images and the database. Since 3D points can be

estimated from images using SfM methods, less manual intervention is required

than in 3D-model-based methods. The main problem of this approach is how

to accurately and efficiently estimate the feature matches. Approaches to this

problem depend on whether the methods estimate the camera pose for a single

image or for an image sequence.

Regarding single-image-based methods, an earlier method [99] simply found

feature matches using a brute force search. Irschara et al. [100] clustered 3D points
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Figure 1.10: 3D point database [100]. Camera poses are estimated by matching

the feature points between the input images and 3D point database.

by generating virtual views and projecting 3D points with image features into

these views. The search space is then limited using an image retrieval technique

that identifies a virtual view including the image features most similar to those

of the current image. Li et al. [101] introduced priorities of feature points to

accelerate the search process. When a match is found, the priorities increase for

the points that are visible with the matched point in a database image. Sattler et

al. [102] matched feature points between the input image and the database using

a vocabulary tree [79].

In image-sequence-based methods, temporal information is helpful to limit

the search space. Arth et al. [103] limited the search space by clustering 3D

points using the visibility of the feature points. Wientapper et al. [104] estimated

a tentative camera pose through the use of the EKF with an inertial sensor.

Matches are then searched for only among those feature points that are projected

onto the tentative camera’s field of view. Taketomi et al. [105] also estimated a

tentative camera pose by tracking the feature points temporally. Lim et al. [106]

also tracked the feature points temporally and searched only images in which the

tracked feature points are detected.

As with the methods using other references, some methods [107, 108] fuse

the 3D point database into SfM. These methods employ BA-based optimization

because it can globally optimize the camera poses.

These methods utilizing a 3D point database require the database to be pre-

pared in advance, which is costly even if an SfM method can be used. However,

18



(a) Perspective image [109] (b) Orthogonal image [115]

Figure 1.11: Examples of aerial images.

as with the methods utilizing an image database, preparing the database is ad-

missible for certain applications in which the camera iteratively travels along the

same route.

1.2.6 Aerial Images

Aerial images have recently become available for most outdoor scenes around

the world, such as Google Maps [maps.google.com] and Microsoft Bing Maps

[bing.com/maps]. Focusing on this availability, camera pose estimation methods

using aerial images have been proposed. There are two types of aerial images:

perspective images (Figure 1.11(a)) and orthogonal images (Figure 1.11(b)).

Bansal et al. [109] proposed a method for estimating camera poses by matching

façades in the ground-view input image with perspective aerial images. Although

perspective aerial images are available on Google Maps and Microsoft Bing Maps,

the available areas are still limited to large cities.

Most methods using aerial images employ orthogonal aerial images that are

available for most outdoor scenes and correspond to absolute 2D positions, i.e.,

latitudes and longitudes. These methods can be classified into learning-based

[110], edge-based [111,112], and feature-point-based [113–115] methods.

Lin et al. [110] proposed a method using community photos with position

information and aerial images. Their method first searches for community photos

that are similar and dissimilar to input ground-view images. Then, using aerial
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images at positions in the identified community photos, a support vector machine

(SVM) is trained and applied to sliding windows over aerial images to estimate the

camera position of the input ground-view image. Although this method estimates

the camera positions from large regions (1,600 [km2] in their experiments), only

rough positions of the cameras can be estimated.

Kim et al. [111] and Leung et al. [112] proposed methods for estimating camera

poses by matching building edges in the ground-view images to those in the aerial

images. As a related approach, Cham et al. [116] estimated camera poses for an

omnidirectional image using a 2D building map instead of aerial images.

Other methods [113–115] match the feature points between input ground-view

images and aerial images. However, it is not easy to find good matches for all

images in a long video sequence, especially for scenes where unique landmarks

cannot be observed. Mills [117] and Toriya et al. [113] proposed robust feature

point matching procedures that compare the orientation and scale of the matches,

which are from feature descriptors such as SIFT [118] and SURF [119], with the

dominant orientation and scale identified through a histogram analysis. However,

this does not work well when a very large number of outliers exist. Toriya et

al. [113] and Noda et al. [114] relaxed the problem by generating mosaic images of

the ground from multiple images for feature matching. However, the accumulative

errors in a mosaic image are not considered in these methods. To resolve this

problem, Pink et al. [115] fuse sparsely obtained camera poses estimated from

aerial images into SfM using the Kalman filter. However, it is difficult for the

Kalman filter to globally optimize the camera poses.

Methods based on matches of the feature points first estimate the homogra-

phy matrices, and the camera poses are then extracted from the homography.

It should be noted that a homography can represent the relationship between

ground-view and aerial images only when the ground is flat. To overcome this

limitation, Sekii et al. [120] treated feature points on aerial images as 3D points

whose horizontal 2D positions are known and altitudes are unknown. Camera

poses are then estimated from these 3D points and their 2D positions on the

ground-view image.
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(a) OpenStreetMap (OSM) (b) Road map extracted from OSM

Figure 1.12: Example road maps [121].

1.2.7 Road maps

In addition to aerial images, road maps are also available for most outdoor scenes

around the world. Brubaker et al. [121] proposed a method that employs SfM

with OpenStreetMap [openstreetmap.org], which is a community-developed road

map (Figure 1.12). Although this method can reduce accumulative errors by

matching the trajectory from SfM to the road maps, there are ambiguities for

certain types of scenes such as straight roads or Manhattan worlds.

1.3. Contributions of this Thesis

In the previous sections, existing camera pose estimation methods were reviewed;

in addition, we indicated that external references should be used to remove accu-

mulative errors. Many kinds of external references have been proposed, and they

should be selected depending on the particular situation or application. Figure

1.13 summarizes the characteristics of external references in terms of the amount

of manual intervention and the extent of the applicable environments. In this

thesis, we focus on the following two situations.

• Situations in which it is necessary to estimate the camera poses without a

pre-measurement of the target environments. This type of situation applies
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environment

Less manual intervention

Already
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Image databases, 3D point databases

GPS, Aerial images, Road maps
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Fiducial markers

Figure 1.13: Characteristics of external references in terms of the amount of

manual intervention and the extent of the applicable environments.

to a 3D reconstruction, match move, free-viewpoint image generation, and

so on.

• Situations in which it is necessary to estimate the camera poses along a

previously taken route. This type of situation applies to robot navigation,

augmented reality, and so on.

In the following, we detail the contributions of the present study for each situation

by selecting the appropriate external references.

1.3.1 Camera Pose Estimation without a Pre-Measurement

of the Target Environments

As shown in Figure 1.13, the following external references are already available

without a pre-measurement of the target environments by users.

• GPS
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• Pre-knowledge of a target environment created from community photos

and street-view images such as image databases, 3D models, or 3D point

databases

• Aerial images

• Road maps

Although community photos and street-view images have been increasing in num-

ber, the available areas are still limited to famous landmarks and large cities. In

contrast, GPS, aerial images, and road maps are available for most outdoor scenes

around the world. Road-map-based methods suffer from ambiguities in certain

types of scenes such as straight roads or Manhattan worlds. Therefore, we focus

on GPS and aerial images as external references.

It is not easy to estimate camera poses for all images in a long video sequence

directly from GPS and aerial images owing to the sampling rate and matching

difficulty. We thus propose techniques that fuse SfM with GPS and aerial images

using BA because BA-based methods can globally optimize camera poses using

sparsely acquired information on camera poses from external references.

In methods using GPS, extended BA that fuses SfM and GPS data has been

previously proposed [70–73] and it works fine if the GPS data are acquired accu-

rately. However, the accuracy of the estimated camera position depends largely

on the confidence of the GPS positioning data because such methods do not con-

sider the GPS positioning confidence. To solve this problem, we add weighting

coefficients depending on the GPS positioning confidence to the energy function

for extended BA.

No existing method uses aerial images as external references in the BA. We

propose a new SfM pipeline that uses feature matches between ground-view and

aerial images. To find good matches from unreliable matches, we newly propose

RANSAC-based [122] outlier elimination methods in both feature matching and

BA stages.
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1.3.2 Camera Pose Estimation along a Previously Taken

Route

Some robot navigation and augmented reality applications require estimating the

camera poses along a previously taken route. For these applications, most of

the references described in the previous section can be used because they can be

prepared beforehand. We focus on methods using a 3D point database and an

image database because, as shown in Figure 1.13, such databases can be created

for large-scale environments with relatively less human effort using SfM methods.

As mentioned in Section 1.2.5, the main problem of methods using a 3D point

database is how to obtain matches between the input images and the database.

To limit the search space, existing methods track the feature points temporally.

However, tracking sometimes fails owing to occlusions and a rapid camera move-

ment. On the other hand, without tracking the feature points, methods using an

image database can efficiently identify the database image that is most similar to

the current image by considering a spatio-temporal connection. We thus propose

a method using a 3D point database that employs an image-database method to

limit the search space.

1.4. Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 describes a camera

pose estimation method that fuses SfM and GPS data using extended BA while

considering the confidence of GPS positioning. Chapter 3 describes a new SfM

pipeline that uses feature matches between ground-view and aerial images, with

a robust feature matching procedure employing a two-stage RANSAC. Chapter

4 describes a method for estimating camera poses online from 2D positions of

the feature points in the current image and their 3D positions obtained from the

database by considering both the topological information and the image features.

Finally, Chapter 5 summarizes this thesis.
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Chapter 2

Extended Bundle Adjustment

using GPS Positioning and Its

Confidence

2.1. Introduction

This chapter describes a camera pose estimation method using GPS positioning

data as external references that are already available in most outdoor scenes

around the world. As described in Chapter 1, the most significant problem in

SfM is the accumulation of estimation errors in a long image sequence. Although

many kinds of methods that reduce accumulative errors have been proposed,

SfM methods essentially cannot be free from accumulative errors unless certain

external references are given.

In this study, to fuse GPS data into SfM, we employ the framework of extended

BA that can globally optimize camera poses using sparsely acquired camera po-

sitions from GPS. Although extended-BA methods using GPS data have been

previously proposed [70–73] and work fine if GPS data are accurately acquired,

existing methods have the following problems.

• The accuracy of the estimated camera position depends largely on the con-

fidence of the GPS positioning data because such methods do not consider

the GPS positioning confidence.
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• The solution often converges to a local minimum when GPS data cannot

be acquired for a long period of time.

To resolve these problems, we add weighting coefficients depending on the GPS

positioning confidence to the energy function for extended BA. To avoid the local

minima, camera positions estimated without GPS data are fitted to the GPS

positions prior to the optimization.

The proposed method basically follows the framework of existing extended-

BA method [70]. As shown in Figure 2.1, the camera pose estimation (A) and 3D

position estimation of the feature points (B) are repeated sequentially for each

frame, from the first frame to the last [5]. In this repetition, the local optimization

process (D) is applied for each frame in which GPS data are obtained to reduce

the accumulative errors. Here, to avoid the local minima, parameter fitting to the

GPS positions (C) is applied for frames in which the GPS positioning is recovered

after a GPS outage. After estimating the initial camera poses using processes

(A) through (D), the estimated poses are globally refined (E). In processes (D)

and (E), a common energy function is minimized. In the following, the energy

function is first defined using reprojection errors and the penalty terms for the

GPS positioning. The optimization process with parameter fitting (C) is then

detailed.

2.2. Energy Function Considering GPS Position-

ing Confidence

To fuse GPS data into SfM, as with existing extended-BA methods [70–73], the

energy function is minimized. The energy function Egps is defined using the sum

of reprojection errors Φ and the penalty term of GPS Ψ as follows:

Egps({Ri, ti}Ii=1, {pj}Jj=1) = Φ({Ri, ti}Ii=1, {pj}Jj=1) + ωΨΨ({Ri, ti}Ii=1), (2.1)

where Ri and ti represent the rotation and translation from the world coordinate

system to the camera coordinate system for the i-th frame, respectively; pj is the

3D position of the j-th feature point; I and J are the numbers of frames and

feature points, respectively, and ωΨ is a weight that balances Φ and Ψ.
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(D) Local optimization using GPS positions

(A) Camera pose estimation by feature tracking

(B) 3D position estimation of feature points

(E) Global optimization using GPS positions

Y

N

(C) Parameter fitting to GPS positions

Y

N

Figure 2.1: Flow diagram of the proposed method using GPS, where f is the

frame index, G is a set of frames in which GPS data are obtained, and Grecovered

is a set of frames in which GPS positioning is recovered after a GPS outage.
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Figure 2.2: Reprojection error.

Here, to treat unreliable GPS data, we newly add weighting coefficients de-

pending on the GPS positioning confidence to the penalty term of GPS Ψ. In the

following, the energy associated with the reprojection error Φ and the penalty

energy for GPS positioning Ψ are both detailed.

2.2.1 Reprojection Errors

As shown in Figure 2.2, the reprojection error is the distance between the detected

2D position of the feature point and the projected position of the corresponding

3D feature point. The reprojection error has often been used in SfM. In this study,

the energy term associated with the reprojection error Φ is defined as follows:

Φ({Ri, ti}Ii=1, {pj}Jj=1) =
1∑I

i=1 |Pi|

I∑
i=1

∑
j∈Pi

µj
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, (2.2)
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ij, Y

c
ij, Z

c
ij)

T = Ripj + ti, (2.3)

where Pi is a set of the feature points detected in the i-th frame, (xij, yij)
T is the

detected 2D position of the j-th feature point in the i-th frame, and µj represents

the confidence of the j-th feature point, which is computed from the reprojection

errors in the sequential process [5].

2.2.2 Penalty Term for GPS Positioning

As shown in Figure 2.3(a), existing extended-BA methods using GPS [70–73]

define the penalty term for GPS positioning through the distance between the
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Figure 2.3: Energy term with respect to GPS positioning.

29



observed and estimated GPS positions as follows:

Ψ̂({Ri, ti}Ii=1) =
1

|G|
∑
i∈G

|ggps
i −RT

i (d
c − ti)|2, (2.4)

where G is a set of frames in which the GPS positioning data are obtained, ggps
i is

the observed GPS position for the i-th frame in the GPS coordinate system, and

dc indicates the position of the GPS receiver in the camera coordinate system.

It should be noted that Lhuillier [72] and Larnaout et al. [73] set dc = 0.

As shown in Figure 2.3(b), we newly define the weighting coefficients depend-

ing on the GPS positioning confidence ci. The penalty term for GPS positioning

is defined as follows:

Ψ({Ri, ti}Ii=1) =
1

|G|
∑
i∈G

(
|ggps

i −RT
i (d

c − ti)|
ci

)2

. (2.5)

Here, ci should be determined depending on the dilution of precision (DOP), a

type of solution in RTK-GPS (RTK-fix, RTK-float), and other error factors. In

the experiments described later, ci is determined by observing the GPS position-

ing data at a fixed point for a long time period.

2.3. Optimization by Minimizing Energy Func-

tion

2.3.1 Range of Optimization

In processes (D) and (E) shown in Figure 2.1, to optimize the camera poses and

3D positions of the feature points, the energy function Egps defined in Equation

(2.1) is non-linearly minimized. The difference in processes (D) and (E) is the

range of optimized frames. In process (D), to reduce accumulative errors in the

sequential process, the parameters from the (f − l)-th frame to the current frame

(f -th frame) are refined. In process (E), the parameters for all frames are refined

to globally optimize the camera poses.
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2.3.2 Parameter Fitting to GPS Positions

During a long GPS outage, the local optimization process (D) does not work well.

Therefore, in the optimization process after GPS positioning is recovered from a

GPS outage, the energy often converges to a local minimum because the initial

parameters include large accumulative errors (Figure 2.4(a)). Concretely, cameras

and feature points around only a frame in which the GPS positioning is recovered

are drawn to the recovered GPS position, and most cameras and feature points

remain at the original positions (Figure 2.4(b)). In this study, to avoid the local

minima, the consistency between the estimated camera poses and the recovered

GPS position is improved before the optimization by fitting the camera positions

and 3D positions of the feature points to the recovered GPS position. This

parameter fitting process is applied except when the confidence of the recovered

GPS position is significantly low because confidence of the recovered GPS position

is usually low and the next GPS outage may occur before the high-confidence GPS

position is obtained. It should be noted that if a high-confidence GPS position is

obtained after a GPS outage, the influence of the low-confidence GPS position is

suppressed by the optimization when considering the GPS positioning confidence.

For parameter fitting, a similarity transform is not appropriate because repro-

jection errors become significantly large in frames around the start of the GPS

outage. We therefore fit the parameters to gradually decrease the changes from

the end of the GPS outage to the start. Concretely, the 3D positions of the

feature points and camera poses are corrected through the following steps.

1. As shown in Figure 2.4(c), the 3D position of the j-th feature point observed

during the GPS outage is updated as follows:

pj ← pj + bj(g
gps
i −RT

i (d
c − ti)), (2.6)

bj =


mj−fs
f−fs

;mj − fs > 0

0 ; otherwise
, (2.7)

where fs is the starting frame of the GPS outage, and mj represents the

median of the frame indexes in which the j-th feature point is observed.

2. As shown in Figure 2.4(d), for the frames during the GPS outage, camera
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Figure 2.4: Parameter fitting to GPS positions.
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poses are estimated by solving the PnP problem using the 3D positions of

the feature points updated by the previous step.

Note that the range of local optimization is set to whole frames during the GPS

outage (from the fs-th frame to the f -th frame) when this fitting process is

applied.

2.4. Experiments

To validate the effectiveness of introducing weighting coefficients depending on the

GPS positioning confidence and parameter fitting, we conducted two experiments

using two datasets: (1) data including many low-confidence GPS positions, and

(2) data including a long GPS outage. The accuracy of the proposed method is

compared with that of the existing extended-BA method [70] quantitatively using

a real video sequence. In the following, we first describe the common aspects of

the two experiments and how to determine the weighting coefficients depending

on the GPS positioning confidence. The results of each experiment are then

detailed.

2.4.1 Experimental Setup

In the experiments, camera poses were estimated for an image sequence (1,600

[pixel] × 1,200 [pixel], 2,756 frames, and 194 [s]) captured by a moving video

camera (Point Grey Research Grasshopper2) mounted on the roof of a vehicle,

as shown in Figure 2.5. Figure 2.6 shows examples of the captured images.

An RTK-GPS receiver (TOPCON GR-3) was attached to the camera, and the

positioning data were acquired at 1 [Hz] during the video capture. Table 2.1

shows the specifications of the RTK-GPS receiver. Approximately 91% of the

GPS positioning data were acquired as high-confidence GPS solutions (RTK-fix)

and used as the ground truth data. Figure 2.7 shows the positions of the ground

truth data. From these data, two datasets including low-confidence GPS solutions

(RTK-float) and a GPS outage were generated by masking the GPS satellite data

using post-process software (TOPCON Tools), and the generated data were used

as the input in the experiments. The details of datasets are described in Sections
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RTK-GPS

Camera

Figure 2.5: Camera and RTK-GPS mounted on the roof of a vehicle.

2.4.3 and 2.4.4. It should be noted that the GPS signals used were actually

acquired in the experimental environment and included the GPS error sources

such as multipaths from buildings and signal decay from trees.

The other conditions were as follows. The intrinsic camera parameters and

the position of the GPS receiver in the camera coordinate system were calibrated

in advance, and these parameters were fixed during the video capture. The video

frames and GPS input were manually synchronized. To fix the accuracy of the

feature tracking, we used feature tracks obtained by Sato et al. [5] for all methods

Table 2.1: Specifications of the RTK-GPS receiver.

Model GR-3

Signal
GPS/GLONASS L1/L2/L5

C/A and P Code & Carrier

Horizontal accuracy (RTK) 10 mm + 1 ppm

Vertical accuracy (RTK) 15 mm + 1 ppm
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(a) 1st frame (b) 400th frame

(c) 800th frame (d) 1,200th frame

(e) 1,600th frame (f) 2,000th frame

(g) 2,400th frame (h) 2,756th frame

Figure 2.6: Example input images.
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Figure 2.7: Ground truth GPS positions.
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compared. Position errors were calculated by comparing the ground truth GPS

positions with the estimated GPS positions RT
i (d

c−ti). We set the range of local

optimization to l = 200, and the weight of the penalty term for GPS positioning

to ωΦ = 10−9 according to Yokochi et al. [70]. For a non-linear minimization of

the energy function, we used sparseLM [50].

2.4.2 Determination of Weighting Coefficients Depending

on GPS Positioning Confidence

In our experiments, we used RTK-GPS whose accuracy depends largely on the

types of solutions (RTK-fix, RTK-float). Thus, using these solution types, we

defined the weighting coefficients depending on the GPS positioning confidence

ci as follows:

ci =

1 ; i ∈ Gfix

cfloat ; otherwise
, (2.8)

where Gfix is a set of frames in which RTK-fix solution data are obtained. Here,

the weight cfloat for the RTK-float solution data was determined experimentally.

Concretely, we first calculated the RMS for both RTK-fix (rmsfix) and RTK-float

(rmsfloat) by observing the GPS positioning data at a fixed point for a long time

period. Then, cfloat was experimentally determined as cfloat = rmsfloat/rmsfix =

107.4.

2.4.3 Quantitative Evaluation using Data Including Many

Low-Confidence GPS Positions (Experiment 1)

To validate the effectiveness of introducing weighting coefficients depending on

the GPS positioning confidence, as described in Section 2.2.2, the accuracy of the

camera positions estimated through the following methods was compared.

Method A: The existing method [70] in which the solution types of GPS

data are not considered.

Method B: The existing method [70] using only RTK-fix solution data.
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Method C: The proposed method considering the solution types of GPS

data.

Method D: An SfM method that does not use GPS data.

Because SfM cannot estimate the absolute camera poses, we fitted the camera

positions estimated from Method D to the ground truths using a similarity trans-

form.

In this experiment, to generate the GPS positioning data through a simula-

tion, we assumed city environments where the confidence of the GPS position-

ing is occasionally low owing to the occlusion of GPS signals from buildings or

trees. As shown in Figure 2.8, the data generated consist of sparsely obtained

high-confidence (RTK-fix) GPS positions and many (86% of GPS positions) low-

confidence (RTK-float) GPS positions.

Comparison of Position Errors with the Existing Method

Figures 2.9 and 2.10 show the estimated GPS positions and position errors in each

frame, respectively. Table 2.2 shows the statistics of the position errors. These

results demonstrate that the vision-based method (Method D) was affected by

the accumulative errors even when the estimated positions were fitted to the

ground truths through a similarity transform. Methods A, B, and C reduced

the accumulative errors using GPS data. However, Method A, which does not

consider GPS positioning confidence, was affected by RTK-float solution data.

In Method B, which used only RTK-fix solution data, the errors were large while

the RTK-float solution data were obtained (500-2,000th frames). The proposed

method (Method C) obtained the most accurate positions, as shown in Table 2.2,

using the weighting coefficients depending on the GPS positioning confidence.

Discussion about Influence of Parameters

Table 2.3 shows the average position errors from the proposed method with a

variable range of local optimization, l, which demonstrates that the optimization

within a short range (l = 50) did not reduce the accumulative errors. Except

for a short range, position errors did not largely depend on the range of local

optimization.

38



-200

-100

0

100

200

0 100 200 300 400

N
or
th
-S
ou

th
[m

]

East-West [m]

First frame

RTK-fix
RTK-float

(a) Horizontal 2D positions

-30

-25

-20

-15

-10

-5

0

5

0 500 1000 1500 2000 2500

A
lt
it
u
d
e
[m

]

Frame number

RTK-fix
RTK-float

(b) Altitudes

Figure 2.8: Input GPS positions (experiment 1).
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Figure 2.9: Estimated GPS positions (experiment 1).
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Figure 2.10: Position errors in each frame (experiment 1).

Table 2.2: Comparison of position errors (experiment 1) [m].

Method Average Std. dev. Max

RTK-fix 0.003 0.003 0.010

RTK-float 1.844 1.093 6.641

A 1.553 1.182 6.326

B 4.298 3.944 14.041

C 1.217 1.070 4.073

D 37.189 13.033 69.388

Table 2.3: Relationship between l and average position errors (experiment 1) [m].

l 50 100 200 400 800

Avg. error 13.431 1.284 1.217 1.232 1.219
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Figure 2.11: Relationship between weight cfloat and average position errors (ex-

periment 1).

Figure 2.11 shows the average position errors from the proposed method with

variable weighting coefficients for low-confidence GPS positioning around cfloat =

107.4. Note that cfloat = 1 indicates Method A, which does not consider the

GPS positioning confidence. The results demonstrate that position errors do not

largely depend on cfloat, and that cfloat obtained from a fixed point observation is

not the best value but is still sufficient.

2.4.4 Quantitative Evaluation using Data Including a Long

GPS Outage (Experiment 2)

To validate the effectiveness of the parameter fitting to avoid the local minima

described in Section 2.3.2, the accuracy of the estimated camera positions from

the following methods was compared.

Method C: The proposed method.

Method C’: The proposed method without parameter fitting.

In this experiment, to generate the GPS positioning data through a simulation,

we assumed city environments in which GPS outages occasionally occur owing to

occlusions from buildings and trees. As shown in Figure 2.12, the data generated

include a long GPS outage (139 [s], 315-2,271th frames, and 72 % GPS position-

ing). We employed parameter fitting even when the confidence of the recovered
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Figure 2.12: Input GPS positions (experiment 2).
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GPS positioning was RTK-float because the errors in the RTK-float positioning

are usually smaller than the accumulative errors of SfM.

Figure 2.13 shows the estimated GPS positions when the GPS positioning was

recovered. For Method C, the results before optimization (right after parameter

fitting) and after optimization are shown. The results demonstrate that cameras

around only the frame in which the GPS positioning was recovered were drawn

to the obtained GPS position in Method C’, which does not apply parameter

fitting. In Method C, the positions close to the ground truth positions were

obtained through parameter fitting and optimization.

Figures 2.14 and 2.15 show position errors in each frame after global optimiza-

tion and a change in energy during the sequential process, respectively. Table 2.4

shows the statistics of the position errors. These results show that the errors from

Method C’ were large during a GPS outage because the energy converged to a

local minimum and optimization did not work well. The errors from Method C’

were also large at around the last frame because an inconsistency between the 3D

positions of the feature points and the camera poses arose from the optimization.

In Method C, the accumulative errors were reduced using GPS positioning around

the first and last frames. However, a comparison of the results from experiment

1 shows that the accumulative errors were still large during a GPS outage.

2.5. Conclusions

In this chapter, we proposed a method using images and GPS data for accurately

estimating camera poses even when the GPS positioning accuracy drops to a

Table 2.4: Comparison of position errors

(experiment 2) [m].

Method Average Std. dev. Max

RTK-fix 0.006 0.009 0.038

RTK-float 1.315 0.989 2.594

C 3.593 3.617 14.935

C’ 60.299 67.829 277.530
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Figure 2.13: Estimated GPS positions after a GPS outage (experiment 2).
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low level by introducing weighting coefficients depending on the GPS position-

ing confidence for extended BA. We also introduced parameter fitting using GPS

positions to avoid the local minima during optimization after a GPS outage. We

confirmed experimentally that the proposed method provides more accurate cam-

era positions compared with an existing extended-BA method. For more practical

use of the proposed method, an automatic weight determination method should

be investigated because appropriate weights are dependent on the environment.

In addition, combining other sensors such as an IMU is important to reduce

accumulative errors during a long GPS outage.
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Chapter 3

Sampling-Based Bundle

Adjustment using Feature

Matches Between Ground-View

and Aerial Images

3.1. Introduction

This chapter describes a camera pose estimation method using aerial images as

external references that are already available for most outdoor scenes around the

world. As mentioned in Chapter 1, the most significant problem in SfM is the

accumulation of estimation errors during a long image sequence. To reduce the

accumulative errors, we employed the framework of extended BA to the SfM

problem using an aerial image as an external reference. Although many kinds

of methods using aerial images have been proposed [109–115,120], to the best of

our knowledge, ours is the first method using aerial images as external references

in BA. For the successful use of an aerial image as a reference in SfM, successful

matching between the aerial image and the ground-view image is very important.

To find good matches from unreliable matches, in addition to the use of GPS and

gyroscope sensors embedded in most recent smartphones, we use two new meth-

ods: (1) RANSAC-based [122] outlier elimination in the feature matching stage
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Figure 3.1: Flow of the proposed method using aerial images.

by focusing on the consistency of the orientation and scale extracted from the

images by feature descriptors such as SIFT [118], and (2) RANSAC-based outlier

elimination in the BA stage using the consistency of the estimated geometry and

matches.

As shown in Figure 3.1, the proposed method consists of three processes:

(a) SfM, (b) feature matching between the ground-view and aerial images, and

(c) sampling-based BA. For process (a), any SfM method can be employed. In

the experiments described later, we employed VisualSFM [43] as a state-of-the-

art SfM implementation. In the following, we describe processes (b) and (c), the

feature matching between the ground-view and aerial images, and sampling-based

BA, respectively.

3.2. Feature Matching Between Ground-View and

Aerial Images

In this section, we propose a robust method for finding matches between ground-

view and aerial images. As shown in Figure 3.2, the method is composed of

(1) ground-view image rectification using homography, (2) feature matching, and
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(3) RANSAC. Here, to achieve robust matching, we propose new criteria for

RANSAC using a consistency check of the orientation and scale from a feature

descriptor. It should be noted that matching for all input frames is not necessary

in our pipeline. Even if we can find only several matched frame candidates, they

can be effectively used as references during the BA stage.

3.2.1 Image Rectification using Homography

Before calculating the feature matches using a feature detector and a descriptor,

as shown in Figure 3.2, we rectify the ground-view images so that the texture

patterns are similar to those of the aerial image. In most cases, aerial images

are taken very far away from the ground and can thus be assumed to have been

captured by an orthographic camera whose optical axis is directed toward the

direction of gravity. To rectify the ground-view images, we also assume that

these images contain the ground plane whose normal vector is directed toward

the direction of gravity. We then compute a homography matrix using the grav-

ity direction in the camera coordinate system which can be estimated from the

vanishing points of parallel lines in the ground-view images or from a gyroscope.

3.2.2 Feature Matching

The feature matches between the rectified ground-view images and the aerial

image are calculated. Here, we use GPS data corresponding to the ground-view

images to limit the search area in the aerial image. More concretely, we select

the region whose center is the GPS position and size is ι× ι. In the experiments

described later, ι was set to 50 [m]. The feature matches are then calculated using

a feature detector and a descriptor. We employed SIFT [118] in our experiments

because of its robustness to changes in scale, rotation and illumination.

3.2.3 RANSAC with Orientation and Scale Check

As shown in Figure 3.2, the results of feature matching often include many in-

correct matches. To remove these matches, we use RANSAC with a consistency

check of the orientation and scale parameters.
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For matches between the rectified ground-view images and the aerial image, we

can use a similarity transform composed of scale s, rotation θ, and translation τ .

During the RANSAC procedure, we randomly sample two matches (the minimum

number required to estimate the similarity transform) to compute the similarity

transform (s, θ, τ ). Here, we count the number of inlier matches that satisfy

|ak − (sR(θ)γk + τ )| < dth, (3.1)

where ak and γk are the 2D positions of the k-th match in the aerial image and

rectified ground-view image, respectively, R(θ) is the 2D rotation matrix with

rotation angle θ, and dth is the threshold. After repeating the random sampling

process, the sampled matches with the largest number of inliers are selected.

The problem here is that the distance-based criterion described above cannot

successfully find correct matches when a very large number of incorrect matches

exist. To achieve more robust matching, we modify the criterion of RANSAC by

checking the consistency of the orientation and scale from a feature descriptor.

Concretely, we count the number of inliers that simultaneously satisfy Equation

(3.1) and the following two conditions.

max

(
sgk · s
sak

,
sak

sgk · s

)
< sth, (3.2)

aad(θgk + θ, θak) < θth, (3.3)

where (sak, sgk) and (θak, θgk) are the scale and orientation of the feature points for

the k-th match on the aerial image and rectified ground-view image, respectively.

The function aad returns the absolute angle difference in the domain [0◦, 180.0◦].

Additionally, sth and θth are the thresholds for the scale and angle, respectively.

3.3. Sampling-Based Bundle Adjustment

Even using the modified RANSAC proposed in the previous section, it is not

possible to remove all incorrect matches in principle because repetitive and/or

similar patterns may exist, e.g., road signs in actual environments, as shown in

Figure 3.3. To overcome this difficulty, we also employ RANSAC for the BA stage

by focusing on the consistency between the feature matches and the estimated

camera poses from the images.
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Figure 3.3: Examples of road signs in an aerial image from Google Maps

[maps.google.com].

3.3.1 Definition of Energy Function

To consider the matches between the ground-view and aerial images, the energy

function is newly defined. As shown in Figure 3.4, since we deal with perspective

ground-view images and an orthographic aerial image, two types of reprojection

errors should be considered. The energy function Eaerial is defined using the

reprojection errors for the ground-view (perspective) images Φ̂, and the aerial

(orthographic) image Ω, as follows:

Eaerial({Ri, ti}Ii=1, {pj}Jj=1) = Φ̂({Ri, ti}Ii=1, {pj}Jj=1) + ωΩΩ({pj}Jj=1), (3.4)

where Ri and ti represent the rotation and translation from a world coordinate

system into a camera coordinate system for the i-th frame, respectively; pj is

the 3D position of the j-th feature point; I and J are the numbers of frames and

feature points, respectively; and ωΩ is the weight that balances Φ̂ and Ω. Because

the energy function is non-linearly minimized in BA, good initial parameter values
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Figure 3.4: Reprojection errors for ground-view (perspective) images and an aerial

(orthographic) image.

are required to avoid the local minima. Before minimizing the energy function, we

fit the parameters estimated by SfM to the GPS positions using a 3D similarity

transform. In the following, the energy associated with the reprojection errors Φ̂

and Ω is detailed.

Reprojection Errors for Ground-view Images

The commonly used reprojection errors are defined by employing a pinhole cam-

era model that cannot deal with projections from behind the camera. Such behind

projections often occur in BA with external references owing to dynamic move-

ments of the camera poses caused by these references. Here, as shown in Figure

3.5, instead of common squared distance errors on the image plane, we employ
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reprojection errors using the angles of rays as follows:

Φ̂({Ri, ti}Ii=1, {pj}Jj=1) =
1∑I

i=1 |Pi|

I∑
i=1

∑
j∈Pi

(
(Φ̂xz

ij )
2 + (Φ̂yz

ij )
2
)

(3.5)

Φ̂xz
ij = ̸

((
xij

1

)
,

(
Xc

ij

Zc
ij

))
(3.6)

Φ̂yz
ij = ̸

((
yij

1

)
,

(
Y c
ij

Zc
ij

))
(3.7)

(Xc
ij, Y

c
ij, Z

c
ij)

T = Ripj + ti (3.8)

where Pi is a set of feature points detected in the i-th frame. Function ̸ returns

an angle between two vectors. Note that (xij, yij)
T is the detected 2D position of

the j-th feature points in the i-th frame.

Here, as mentioned in [36], convergence of energy is very poor with angular

reprojection error (Φ̂ij)
2 = ̸ ((xij, yij, fi)

T, (Xij, Yij, Zij)
T)2. Then, as shown in

Figure 3.5(b), we split the angular reprojection error into the xz and yz compo-

nents to simplify the Jacobian matrix of Eaerial required by non-linear least squares

methods such as the Levenberg-Marquardt method. In this definition, Φ̂xz
ij and

Φ̂yz
ij do not depend on the y and x components of ti, respectively. We confirmed

experimentally that this splitting largely affects the convergence performance.

Reprojection Errors for an Aerial Image

As shown in Figure 3.6, the reprojection errors for an aerial (orthographic) image

can be defined as follows:

Ω({pj}Jj=1) =
1∑

i∈M |Ai|
∑
i∈M

∑
j∈Ai

∣∣aj − (Xw
j , Y

w
j )T

∣∣2 , (3.9)

(Xw
j , Y

w
j , Zw

j )
T = pj (3.10)

where M is a set of frames in which the feature matches between the ground-view

and aerial images are obtained, Ai is a set of feature points matched to the aerial

image in the i-th frame, and aj is the 2D position of the j-th feature point in the

aerial image.

56



World
coordinate system

Detected 2D position:

3D position of  -th feature point:

(East)

(North)

(Altitude)

Projected 2D position:

Reprojection error for aerial image:

Figure 3.6: Reprojection error for an aerial (orthographic) image.

3.3.2 RANSAC for Bundle Adjustment

The RANSAC scheme is introduced in BA using the consistency between the

feature matches and the estimated camera poses from the images. First, we

randomly sample n frames from the matched frame candidates and apply BA

using feature matches included in the sampled frames, i.e., using a set of selected

frames M ′ instead of M in Equation (3.9). We then count the number of inlier

frames that satisfy the following condition.

average
j∈Ai

(αij) < αth (3.11)

where αij is an angular reprojection error of the j-th feature point in the aerial

image coordinate system, as shown in Figure 3.7, and αth is the threshold. Here,

αij can be computed as follows:

αij = ̸
(
aj − prxy(−RT

i ti), prxy
(
RT

i (xij, yij, 1)
T
))

, (3.12)
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Figure 3.7: Criterion used in RANSAC for BA.

where prxy is a function projecting a 3D point onto the x-y plane (the aerial image

coordinate system).

After repeating the random sampling process at the given times, sampled

frames with the largest number of inlier frames are selected. Finally, camera

poses are refined by reapplying BA using the feature matches with the selected

inlier frames as references.

3.4. Experiments

To validate the effectiveness of the proposed method, we quantitatively evalu-

ated the performances of the sampling-based BA as well as the feature matching

process using two datasets: (1) data captured by a hand-held sensor unit on the

textured ground, and (2) data captured by a car-mounted sensor unit on a road-

way. In the following, we first describe the common setup for the two experiments.

The results of each experiment are then detailed.
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3.4.1 Experimental Setup

We used an iPhone 5 (Apple) as a sensor unit including a camera, GPS, and

a gyroscope. The GPS and gyroscope measured the position at 1 [Hz] and the

direction of gravity for every frame, respectively. We also used an RTK-GPS

(Topcon GR-3, 1 [Hz], horizontal positioning accuracy in specification sheet is

0.01 [m]) to obtain the ground truth positions. The positions from the GPS data

were assigned temporally to the nearest frame. As the external references, we

downloaded the aerial images covering the area used in the experiments from

Google Maps [maps.google.com], whose coordinate system is associated with the

metric scale.

To obtain the initial values for the BA, we employed VisualSFM [43] as a

state-of-the-art SfM implementation. For non-linear minimization, we used Ceres-

Solver [52]. We experimentally set dth = 2 [pixel], sth = 2 and θth = 40 [◦] for the

feature matching, and ωΩ = 10−5 and αth = 5.0 [◦] for the BA. We evaluated the

accuracy of the proposed method by comparing the following methods.

• BA without references [43]

• BA with references without RANSAC, using all the matches obtained by

the feature matching process

• BA with references and RANSAC

Since the BA without references cannot estimate absolute camera poses, we fit-

ted the camera positions estimated using SfM to the ground truths through a

similarity transform.

3.4.2 Quantitative Evaluation using Data Captured on Tex-

tured Ground (Experiment 1)

In this experiment, we used video images (640 [pixel] × 480 [pixel], 2,471 frames,

494 [s]) captured by a hand-held sensor unit on a textured ground. Figures 3.8

and 3.9 show example input ground-view images and an aerial image (19.2 [pixel]

= 1 [m].)
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(a) 1st frame (b) 350th frame

(c) 700th frame (d) 1,050th frame

(e) 1,400th frame (f) 1,750th frame

(g) 2,100th frame (h) 2,450th frame

Figure 3.8: Example input ground-view images (experiment 1).
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GPS on iPhone

RTK-GPS (Ground truth)

BA with references without RANSAC

BA without references

BA with references and RANSAC

First frame

Last frame

50 m

50 m

Correctly matched feature point on aerial image
(selected as inlier by RANSAC)

Incorrectly matched feature point on aerial image
(selected as outlier by RANSAC)

Figure 3.9: Experimental environment and results (experiment 1).
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Quantitative Evaluation of Feature Matching

In this experiment, we first evaluated the effectiveness of the proposed feature

matching process including RANSAC using the scale and orientation check de-

scribed in Section 3.2. Here, we tested RANSAC with variable thresholds sth and

θth. To count the number of correctly matched frames, we first selected frames

that have four or more inlier matches after RANSAC. From these frames, we

manually counted frames whose matches were correct.

Figure 3.10 shows the rate and number of frames in which all selected matches

were correct. Note that sth = ∞ and θth = 180.0 [◦] mean that the orientation

check and scale check were disabled, respectively. The results indicate that the

rate was significantly improved through the scale and orientation check. We can

also confirm that small values of sth and θth tend to increase this rate. How-

ever, the number of correctly matched frames, which is important for optimizing

the camera poses using BA, was decreased when using small thresholds. In the

following experiments, we employed feature matches with sth = 2 and θth = 40 [◦].

Figure 3.11 shows the effects of the scale and orientation check for two sam-

pled images. In both cases, RANSAC without scale and orientation check could

not select any correct matches, whereas the proposed RANSAC with scale and

orientation check was able to do so. However, as shown in Figure 3.12, incorrect

matches still remain even when we used both scale and orientation check because

similar patterns exist.

Quantitative Evaluation of Bundle Adjustment

In this experiment, we evaluated the effectiveness of BA with RANSAC, as de-

scribed in Section 3.3. In this stage, frames with GPS data were sampled (650

out of 2,471 frames) and used to reduce the computational time. As external

references, we used the frames and feature matches selected through the orienta-

tion and scale check described in the previous section. Here, ten out of fourteen

frames had correct matches.

We first investigated the influence of weight ωΩ for balancing two types of

reprojection errors in the energy function of the BA. Figure 3.13 shows the average

position errors from the BA with variable weight ωΩ using all of the correctly

matched frames. This result demonstrates that position errors did not largely
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Figure 3.10: Rates and numbers of frames in which all selected matches are

correct (experiment 1).
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Similarity transform
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(a) Without orientation and scale check
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148.45 1.12 

Similarity transform

SIFT keypoints

(b) With scale check, with/without orien-
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Similarity transform
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(d) With orientation check, with/without

scale check

Figure 3.11: Selected inliers for example images (experiment 1). The solid and

dashed lines represent correct and incorrect matches, respectively. The relative

angle and scale of the matched feature points are shown in bottom-right table

along with the corresponding line colors. The green points are the ground truths

of the camera positions. Note that RANSAC with/without orientation check for

(b) and scale check for (d) gave the same results.
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Figure 3.12: Examples of incorrect matches by RANSAC using orientation and

scale check (experiment 1). The interpretations of the symbols are the same as

in Figure 3.11.
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Figure 3.14: Number of inlier frames with variable threshold αth (experiment 1).

depend on weight ωΩ except when small values were applied. In the following

experiments, we employed ωΩ = 10−5.

We next evaluated the proposed RANSAC in terms of its capability to se-

lect frames with correct matches. Here, we experimentally set n = 4 and tested

100 trials. To efficiently optimize the camera poses using feature matches be-

tween ground-view and aerial images, we modified the random sampling process

of frames in RANSAC so that the distances between average positions of matches

on an aerial image were 25 [m] or more. Figure 3.14 shows the numbers of inlier

frames from RANSAC with variable threshold αth. The results demonstrate that

incorrectly matched frames were selected as inliers by large values of αth, and

that the numbers of correctly matched frames decreased by small values of αth.

In the following experiments, we employed αth = 5.0 [◦].

We also checked the number of inlier frames selected in each trial with αth =

5.0 [◦]. Figure 3.15 shows the number of trials and inlier frames derived by each

trial. From this figure, we can see that the sampled frames without incorrect

matches tend to increase the number of inlier frames. This result demonstrates

that the criterion of RANSAC in the BA stage works successfully. We also con-

firmed that the trials that derived the largest number of inlier frames successfully
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Figure 3.15: Number of trials and inlier frames derived by each trial (experi-

ment 1).

selected all of the correct matches.

Figures 3.9 and 3.16 show the estimated camera positions and horizontal po-

sition errors for each frame, respectively. These results demonstrate that the

estimated camera positions from BA without references were affected by the

accumulative errors. The BA without RANSAC was affected by the incorrect

matches. The proposed BA with RANSAC reduced the accumulative errors. It

should be noted that, at the end of the sequence, the accumulative errors still

remained because the ground was not level, and no matches were therefore found.

3.4.3 Quantitative Evaluation using Data Captured on Road-

ways (Experiment 2)

In this experiment, we used video images (640 [pixel] × 480 [pixel], 7,698 frames,

396 [s]) captured by a car-mounted sensor unit on a roadway. Figures 3.17 and

3.18 show example input ground-view images and an aerial image (approximately

22.3 [pixel] = 1 [m]). Note that we manually excluded frames captured when the

car was stopped at a traffic light.

We first applied the feature matching process including RANSAC through

scale and orientation check. After selecting frames with four or more inlier
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Figure 3.16: Horizontal position error in each frame (experiment 1).

matches, we obtained 37 frames (28 frames without incorrect matches and nine

frames with incorrect matches). We then applied RANSAC during the BA stage

using frames with GPS data (739 out of 7,698 frames). Here, we experimentally

set n = 7. To efficiently optimize the camera poses using feature matches be-

tween ground-view and aerial images, we modified the random sampling process

of frames in RANSAC so that the distances between average positions of matches

on an aerial image were 100 [m] or more. After 100 trials, the trial that derived

the largest number of inlier frames selected 22 frames as inliers (nineteen frames

without incorrect matches and three frames with incorrect matches) and fifteen

frames as outliers (nine frames without incorrect matches and six frames with in-

correct matches). Figures 3.19 and 3.20 show example frames selected as inliers

and outliers, respectively. As shown in Figure 3.19, the frames with incorrect

matches were selected as inlier frames by RANSAC because the positions of the

incorrect matches on the aerial image were close to the correct positions. Figures

3.18 and 3.21 show the estimated camera positions and horizontal position errors
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(a) 1st frame (b) 1,100th frame

(c) 2,200th frame (d) 3,300th frame

(e) 4,400th frame (f) 5,500th frame

(g) 6,600th frame (h) 7,698th frame

Figure 3.17: Example input ground-view images (experiment 2).
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Figure 3.18: Experimental environment and results (experiment 2).
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(a) (b)

(c) (d)

Figure 3.19: Examples of frames selected as inliers by RANSAC during the BA

stage (experiment 2). The solid and dashed lines represent correct and incorrect

matches, respectively.

(a) (b)

Figure 3.20: Examples of frames selected as outliers by RANSAC during the BA

stage (experiment 2). The dashed lines represent incorrect matches.

71



0

10

20

30

40

50

0 2000 4000 6000

H
o
ri
zo

n
ta
l
p
o
si
ti
o
n
er
ro
r
[m

]

Frame number

Incorrectly matched frame
(selected as inlier by RANSAC)

Incorrectly matched frame
(selected as outlier by RANSAC)

Correctly matched frame
(selected as inlier by RANSAC)

Correctly matched frame
(selected as outlier by RANSAC)

BA w/o references

BA w/ references w/o RANSAC

BA w/ references and RANSAC

Figure 3.21: Horizontal position error in each frame (experiment 2).

for each frame, respectively. Although frames with incorrect matches still re-

mained even when using a two-stage RANSAC, the proposed BA with RANSAC

reduced the accumulative errors. However, at around the 6,000th frame, the

accumulative errors are still large because there were only a small number of

matches.

3.5. Conclusions

In this chapter, we proposed a method for removing accumulative errors in SfM

using aerial images as external references that already exist for many places

around the world. To this end, we proposed BA that uses feature matches be-

tween the ground-view and aerial images. To find correct matches from unreliable

matches, we introduced new RANSAC schemes to both the feature matching and
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bundle adjustment stages. In the experiments, we confirmed that the proposed

method is effective for estimating the camera poses of real video sequences taken

in outdoor environments. However, the accumulative errors still remain when

there are no available matches during a long period of time. To find matches

where the ground is not level, affine and/or perspective invariant features such

as ASIFT [123] and Ferns [124] can be used with homography as a geometric

transformation in RANSAC.
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Chapter 4

Online Camera Pose Estimation

using 3D Point Database Created

from Structure-from-Motion

4.1. Introduction

Some robot navigation and augmented reality applications require estimating the

camera poses along a previously taken route. In this chapter, we propose an online

camera pose estimation method for such applications using a 3D point database

created using SfM from previously captured images. Unlike the methods based on

SfM described in Chapters 2 and 3, the method proposed in this chapter estimates

the camera poses directly from a database. Errors are therefore not accumulated

during the online camera pose estimation. Although the database created by SfM

is affected by accumulative errors, the methods that reduce accumulative errors,

e.g., loop closing, can be applied during the offline stage.

As mentioned in Section 1.2.5, many methods based on a 3D point database

have been previously proposed [99–106]. The main problem of methods using a

3D point database is how to obtain matches between the input images and the

database. To limit the search space, existing methods track the feature points

temporally [104–106]. However, tracking sometimes fails owing to occlusions and

rapid movement of the cameras. On the other hand, methods using an image

database, as described in Section 1.2.3, can efficiently identify the database image
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that is the most similar to the current image by considering the spatio-temporal

connections between the database and the input images. By combining these

two approaches, we propose a method utilizing a 3D point database that em-

ploys an image-database method to limit the search space. For a state-of-the-art

image-database method, we employ topometric-localization [88], which considers

topological information such as the spatio-temporal connections between sequen-

tial images at the metric scale.

As an application, we focus in particular on vehicle navigation for autonomous

driving. The proposed method estimates the camera pose related to the vehicle

pose by assuming that the transformation between the camera coordinate system

and the vehicle coordinate system is known. As shown in Figure 4.1, the proposed

method consists of two stages:

Offline creation of 3D point database: A 3D point database is created from

images that are captured when a vehicle drives along a route for the first time.

This database consists of images, 3D positions of the feature points estimated by

SfM [43], and a topological graph for topometric localization [88].

Online localization: The vehicle is localized using a 3D point database and the

current image through the following three steps. First, we identify the database

image that is the most similar to the current image using topometric localiza-

tion [88]. Next, we estimate the 2D-2D correspondences of the feature points

between the current image and the identified database image to obtain 3D-2D

correspondences of the feature points for the current image. The vehicle pose is

finally estimated from these 3D-2D correspondences by solving the PnP problem.

4.2. Offline Creation of 3D Point Database

In our method, the database is created from images captured when the vehicle

drives along a route for the first time. The database consists of images, the 3D

positions of the feature points estimated using SfM, and a topological graph for

topometric localization.

Structure-from-motion: We use VisualSFM [43], which is a state-of-the-art

SfM implementation, to obtain the 3D positions of the feature points and camera

75



Camera

Structure-from-motion

Odometer

Scaling

Image sequence

Distance

Creation of graph for 

topometric localization

Camera

Topometric localization
Graph

Feature matching

Identified 

database image

Current image

Estimation of camera 

pose from 3D-2D 

correspondences

2D-2D 

correspondences

Estimated camera pose

- Camera poses

- 3D positions

of feature points

Metric camera poses

Metric 3D positions of feature points

Offline creation of 3D point database

Online localization
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poses. Since SfM cannot estimate the camera pose at the metric scale, which

is necessary to estimate the vehicle pose at the metric scale for online localiza-

tion, we measure the total driving distance using an odometer, which is standard

equipment in ordinary vehicles. Specifically, the scale is determined by adjusting

the total driving distance obtained using SfM based on the distance obtained

from the odometer. In this way, metric 3D positions of the feature points and

camera poses are obtained.

Creation of graph for topometric localization: We prepare a graph for topo-

metric localization, which is used in the online process to identify the database

image that is the most similar to the current image. The graph is created as de-

scribed in [88], except that the camera positions are estimated using SfM instead

of GPS. The edges of graph represent spatio-temporal connections of the images,

and the nodes represent the images with their SURF features [119].

4.3. Online Camera Pose Estimation

The vehicle is localized using a 3D point database and the current image through

the following three steps.

Topometric localization: We first identify the database image that is the most

similar to the current image using topometric localization [88], which considers

both the image features and spatio-temporal connections between sequential im-

ages represented as the graph.

Feature matching: We next estimate the 2D-2D correspondences of the feature

points between the current image and the identified database image to obtain

the 3D-2D correspondences of the feature points for the current image. We use

SiftGPU [125], a GPU implementation of the SIFT feature, to achieve real-time

processing.

Estimation of camera pose from 3D-2D correspondences: In the feature

matching stage, 2D-2D correspondences between the current image and the iden-

tified database image are obtained. We also have the 3D positions of the feature

points for the database image estimated during the offline stage. By combining

them, we can obtain the 3D-2D correspondences of the feature points for the cur-
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Figure 4.2: Evaluation vehicle.

rent image. We then estimate the camera pose from these 3D-2D correspondences

by solving the PnP problem. To do so, we simply use a solver implemented in

OpenCV [126], which non-linearly minimizes the reprojection errors. We also

apply RANSAC to reject the incorrect feature matches. If the number of inlier

matches is smaller than the threshold, the estimated camera pose is ignored as

a failure. In our experiment, the threshold was set to 6, which is the minimum

number needed to linearly solve the PnP problem.

4.4. Experiments

To test the effectiveness of the proposed method, we evaluated its accuracy quan-

titatively using image sequences captured in an indoor parking lot.

4.4.1 Experimental Setup

To evaluate our proposed method, we used a vehicle equipped with a sensor suite.

As shown in Figure 4.2, a camera was mounted on the roof of the vehicle, and

was oriented approximately 45 [◦] to the right of the straightforward direction,

and configured to acquire 1,024 [pixel] × 768 [pixel] images. The vehicle was able

to output its driving distance like an ordinary vehicle.

Two image sequences were captured in an indoor parking lot on different days
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by manually driving along a route that makes a loop between the entrance and

a parking space. One of the sequences was used for creating the database, and

the other was used as input for online localization. The reference poses used

to evaluate the accuracy of the estimated poses were estimated using an offline

SfM [43]. This offline SfM used the feature matches among all of the images and

took a long time to achieve an accurate estimation.

4.4.2 Quantitative Evaluation

Figure 4.3 shows examples of the input images, the database images identified

through topometric localization, and the results of feature matching between

these images. Figure 4.4 shows the vehicle poses and 3D positions of the feature

points for the database images, the vehicle poses estimated using the proposed

method, and the reference vehicle poses. Except for the last quarter, the esti-

mated vehicle poses were almost the same as the reference vehicle poses along

the entire route, despite changes in the illumination (Figure 4.3(b)) and the envi-

ronment (Figure 4.3(c)). Figure 4.5 shows histograms of the errors by comparing

the estimated vehicle poses with the reference vehicle poses. Table 4.1 shows the

average computation time of the proposed method, which was obtained using a

PC with a 3.40 [GHz] Intel Core i7-2600k CPU and an NVIDIA GeForce GTX

580 GPU. From these results, it was confirmed that the proposed method esti-

mated the vehicle pose at 8 [Hz] within a position error of 0.1 [m] and a posture

error of 0.3 [◦] in approximately 70% of the input images.

We investigated the causes of the errors for frames whose position errors are

larger than 0.1 [m] or posture errors are larger than 0.3 [◦]. Approximately 51%

(54/104) of the frames were affected by the feature matches of the vehicle parked

in different places in the database and the input images (Figure 4.3(d)). The other

frames can be affected by the errors of SfM during the offline database creation.

We also investigated the causes of the failures. Approximately 24% (19/78) of the

frames were affected by the errors in the topometric localization (Figure 4.3(e)),

and the other frames were affected by significant changes in the illumination and

the environment (Figure 4.3(f)). Although the proposed method occasionally

provides unstable estimates and failures owing to changes in the environment,

it can be used in autonomous vehicles by combining sensors providing relative
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(a)

(b)

(c)

Figure 4.3: Examples of input images (right), the database images identified

through topometric localization (left), and the results of feature matching be-

tween these images (red line, inlier; blue line, outlier). (1/2)
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(d)

(e)

(f)

Figure 4.3. Continued. (2/2)
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Parking space
(start and goal)

Entrance

10 m

10 m

Figure 4.4: The vehicle poses (red) and 3D positions of the feature points (gray)

for the database images, the vehicle poses estimated by the proposed method

(blue), and the reference vehicle poses (green).
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Figure 4.5: Histograms of the errors.
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Table 4.1: Computation time of the proposed method [ms].

Topometric Feature Solving
Total

localization matching PnP problem

8.8 47.8 67.6 124.2

measurements such as odometry and IMU.

4.5. Conclusions

In this chapter, we proposed a method for localizing a vehicle along a previ-

ously driven route using a 3D point database created in advance. The proposed

method identifies the database image that is the most similar to the current image

through topometric localization, and estimates the vehicle poses from the 3D-2D

correspondences of the feature points between the database and the current im-

age. Our experiment showed that the method can estimate a vehicle pose within

a position error of 0.1 [m] and a posture error of 0.3 [◦] in approximately 70%

of the input images captured in an indoor parking lot. However, the proposed

method sometimes provides unstable estimates and failures owing to changes in

the environment. To overcome this problem and achieve an autonomous vehi-

cle, sensors such as odometry and IMU should be combined with the proposed

method.
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Chapter 5

Conclusions

5.1. Summary

This thesis proposed methods for estimating camera poses without accumula-

tive errors by utilizing external references. For situations in which camera poses

should be estimated without a pre-measurement of the target environments, we

employed GPS and aerial images as external references by focusing on their avail-

ability in outdoor scenes. For situations in which cameras iteratively pass along

the same route, we employed a 3D point database, which can be created by SfM,

as an external reference.

For the method using GPS, we proposed extended BA by considering the

GPS positioning confidence to achieve an accurate estimation even when the

GPS positioning confidence is low. For the RTK-GPS, we introduced weighting

coefficients depending on the solution types (RTK-fix or RTK-float). We also

introduced parameter fitting to avoid the local minima in the extended BA after

a long GPS outage. We confirmed experimentally that the proposed method can

obtain more accurate camera positions than an existing extended-BA method that

does not consider the GPS positioning confidence. However, the accumulative

errors are still large during a long GPS outage.

For the method using aerial images, we proposed BA using feature matches

between ground-view images and an aerial image. To the best of our knowledge,

ours is the first method that uses aerial images as external references in BA. To

this end, we proposed a robust feature matching method using RANSAC for both
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the feature matching and BA stages. We confirmed experimentally that two-stage

RANSAC selects correct matches, and BA using feature matches achieves a more

accurate estimation than ordinary BA. However, accumulative errors still remain

when there are no available matches for a long period of time.

For the method using a 3D point database, to efficiently limit the search

space of the feature matches, we employed the topometric localization [88] that

can efficiently identify the database image most similar to the current image.

We confirmed experimentally that the proposed method can estimate the camera

pose at 8 [Hz] within a position error of 0.1 [m] and a posture error of 0.3 [◦] in

approximately 70% of the input images using a PC with a 3.40 [GHz] Intel Core

i7-2600k CPU and an NVIDIA GeForce GTX 580 GPU. However, the proposed

method provides some unstable estimates and failures owing to changes in the

environment.

5.2. Future Directions

In this thesis, we proposed three methods employing three types of external ref-

erences to estimate camera poses without accumulative errors. As mentioned in

Section 1.2, other types of external references such as community photos from the

Internet and road maps are also available for certain environments. Therefore, to

reduce accumulative errors in various environments and improve the robustness

of the estimation, combining various types of external references depending on

their availability and confidence is important. If more than one type of external

reference is available, the confidence of the external references can be mutually

estimated.

To more accurately estimate a camera pose, improving the quality of each

external reference is also important. Although the resolution of aerial images

is increasing, such images are still insufficient for certain areas. In addition,

a number of moving objects, e.g., cars and pedestrians, hide the ground in road

environments. Since the proposed method using aerial images can robustly match

ground-view images with aerial images, it is possible to increase the quality of an

aerial image using high-resolution ground-view images without moving objects.

This is useful not only for estimating camera poses but also for ordinary map
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applications such as Google Maps. For a 3D point database, it is possible to

iteratively update the database using images for online camera pose estimation.
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