
Evaluation of Image Processing Algorithms on Vehicle Safety System
Based on Free-viewpoint Image Rendering

Akitaka Oko1,∗, Tomokazu Sato1, Hideyuki Kume1, Takashi Machida2 and Naokazu Yokoya1

Abstract— Development of algorithms for vehicle safety sys-
tems, which support safety driving, takes a long period of
time and a huge cost because it requires an evaluation stage
where huge combinations of possible driving situations should
be evaluated by using videos which are captured beforehand
in real environments. In this paper, we address this problem
by using free viewpoint images instead of the real images.
More concretely, we generate free-viewpoint images from a
combination of a 3D point cloud measured by laser scanners
and an omni-directional image sequence acquired in a real
environment. We basically rely on the 3D point cloud for
geometrically correct virtual viewpoint images. In order to
remove the holes caused by the unmeasured region of the
3D point cloud and to remove false silhouettes in surface
reconstruction, we have developed a technique of free-viewpoint
image generation that uses both a 3D point cloud and depth
information extracted from images. In the experiments, we have
evaluated our framework with a white line detection algorithm
and experimental results have shown the applicability of free-
viewpoint images for evaluation of algorithms.

I. Introduction

An image-based vehicle safety system supports safety
driving by detecting and alerting dangerous situations to the
driver, and it reduces the risk of traffic accidents. Thus, the
demand for good image processing algorithms for a vehicle
safety system is rapidly growing. One problem here is the
cost for evaluating developed algorithms. In order to evaluate
the algorithms, a vast amount of images should be captured
under huge combinations of possible driving situations in
real environments. Although there exist studies [1], [2],
[3] that use computer graphics (CG) images for evaluation,
experimental results showed that the reality of CG images
are not sufficient for evaluating these algorithms [4]. On the
other hand, a free-viewpoint image rendering method based
on real images can be used for generating images of road
environments for evaluation. However, actually this kind of
techniques has not been used for evaluation of algorithms
on vehicle safety systems because the quality of generated
images does not reach the sufficient level.

In this paper, we propose a free-viewpoint image rendering
framework for generating images for a virtual camera path
as shown in Figure 1 that can be used for evaluating image
processing algorithms on vehicle safety systems. When we
focus on the algorithms such as white line detection, road
detection, and obstacles detection, (i) errors of 3D geometry
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and (ii) lack of information in generated images will make
the evaluation results inaccurate. For reconstructing accurate
geometry in the generated images for virtual viewpoints, we
first measure a 3D point cloud from surrounding environ-
ments of driving roads by LiDAR mounted on a vehicle
and apply a surface reconstruction technique [5]. In order
to compensate missing regions in the generated depth maps
due to occlusion or lack of sampling points, we also extract
3D information from omni-directional images whose camera
positions are known. By using both the 3D point cloud
and the depth information extracted from images, we can
generate free-viewpoint images based on compensated 3D
geometry.

The main contributions of our work are: (1) development
of a high-quality free-viewpoint image generation framework
which focuses on generating accurate and hole-less images,
(2) world-first applicability verification of the use of the
synthesized free-viewpoint images in place of the real images
in the evaluation stage for actual image processing algorithms
on vehicle safety systems.

This paper is outlined as follows. In Section 2, evaluation
methods for safety systems and free-viewpoint image ren-
dering techniques are reviewed. In Section 3, the proposed
framework and its implementation are detailed. Evaluation
results are presented in Section 4. Finally Section 5 summa-
rizes the present study.

II. RelatedWork

A. Evaluation of image processing algorithms on vehicle
safety systems

One of the straight-forward ways to reduce the cost for
algorithm evaluation is utilization of virtual environments
constructed by CG [1], [2], [3]. In a virtual environment, any
combinations of situations can be virtually generated. TASS
[1] developed such virtual environments, and algorithms
including white line detection can be evaluated using the
generated environment. Weinberget al. [2] proposed a CG-
based driving simulator. Although such a CG-based environ-
ment can be used to evaluate image processing algorithms of
vehicle safety systems, the experimental results showed that
the reality of generated images is not sufficient to use CG
images for evaluating these algorithms [4]. In order to gener-
ate photo-realistic CG images for this purpose, a huge cost is
required. For increasing the reality of generated images, Sato
et al. [3] employed a free-viewpoint image rendering method
based on real images for generating background images of
the scene. However, important parts of the scene such as
road surfaces or curbs for evaluating algorithms were still



Fig. 1. Example of generated images for virtual camera path that simulates lane change. These images were generated by data captured from the vehicle
running on the left lane.

generated based on CG models. Although the use of a virtual
environment or a virtualized real environment is expected to
drastically reduce the time and cost for developing image
processing algorithms for vehicle safety systems, existing
techniques for generating images do not reach a sufficient
quality of images for evaluation.

B. Virtualization of real world by surface reconstruction

One alternative to the CG-based systems is to use a
virtualized 3D world based on real world data. With the
development of 3D scanning systems for outdoor environ-
ments, e.g., Topcon IP-S2 [6] and Velodyne HDL-64E [7],
it becomes much easier to acquire a 3D point cloud and
textures for large outdoor environments.

In order to generate textured 3D models of road environ-
ments, 3D surfaces should be first generated from the 3D
point cloud. Schnabelet al. [8] proposed a method that fits
3D primitives to the 3D point cloud. It successfully works
when the geometry of a target 3D point cloud is sufficiently
simple to be approximated by the primitives. Yanget al.
[9] proposed a method called surface splatting that allocates
a local plane for each point to reconstruct 3D surfaces. In
order to generate smoother surfaces than a combination of
planes or primitives, Lianget al. [5] proposed a surface
reconstruction method that estimates surfaces as the bound-
aries of interior and exterior regions in a 3D point cloud.
Although this surface reconstruction technique can fill small
gaps in the 3D point cloud by finding local minima of an
energy function that is based on the mixture of Gaussian, the
problem of the artifacts called fattened-silhouettes, where an
object looks fatter than the actual geometry, often appears in
generated 3D surfaces. In this paper, we reduce the fattened-
silhouettes using a view-dependent depth test technique with
multiple depth maps estimated from images.

One remaining problem of surface reconstruction is miss-
ing surfaces for the region where no 3D point data is
acquired. These unrecovered surfaces will be a severe prob-
lem in evaluation of an image-based vehicle safety system
because the objects that should exist will disappear from the
image. In this paper, we call such artifacts cut-silhouettes
and we tackle with this problem by using a free-viewpoint
image rendering technique with view-dependent geometry
and view-dependent texture mapping.

C. Free-viewpoint image rendering

Free-viewpoint image rendering is a technique that gener-
ates an image whose viewpoint is freely determined. Model-
based rendering (MBR) directly renders the image from

a virtual viewpoint using view-independent 3D geometry
(3D model) and view-independent (fixed) textures. Although
reconstructed 3D surfaces by the methods introduced in the
previous section can be rendered by MBR, errors of the
reconstructed 3D model appear as distortion in the rendered
textures in this simple renderer. In order to reduce such dis-
tortion, view-dependent texture is known as an effective so-
lution [10]. In addition to the use of view-dependent texture
mapping, a view-dependent geometry generation technique
[11] is also proposed to remove the problem of the missing
surfaces in generated images. In this paper, although we
employ the combination of view-dependent texture mapping
and view-dependent geometry, we extend the existing free-
viewpoint image rendering techniques for reducing fattened-
/cut-silhouettes in order to generate photo-realistic images
for evaluation of vehicle safety systems.

III. Free-viewpoint Image Rendering from 3D Point Cloud
and Images

A. Overview

Figure 2 shows the pipeline of free-viewpoint image
rendering in the proposed framework. The pipeline is consists
of two stages: (a) the pre-processing stage and (b) the image
rendering stage. In the pre-processing stage, a 3D point
cloud and omni-directional images of a road environment are
acquired using a scanning vehicle such as IP-S2 [6]. From
these data, an omni-directional dense depth map is generated
for each frame of the omni-directional image considering
both the 3D point cloud and the image data. In the rendering
stage (b), after setting a virtual camera position, we estimate
a view-dependent depth map for the virtual camera position.
The estimated depth map is then refined to reduce fattened-
/cut-silhouettes using view-dependent depth test (VDDT)
with multiple dense depth maps prepared in the stage (a).
Using the refined depth map for the virtual camera position,
a free-viewpoint image is rendered using a view-dependent
texture mapping technique. Each stage in our pipeline is
described in the following sections.

B. Pre-processing stage

(a-1) Acquisition of 3D point cloud and omni-directional
images

In the proposed framework, a 3D point could and omni-
directional images that are taken along a road are required
with the accurate positions of a scanning vehicle. In order
to collect these data, we employed Topcon IP-S2 [6]. In this
system, three SICK LiDARs, Point Grey Ladybug 3, Topcon



(a-1) acquisition of 3D point cloud and

omni-directional images

(a-2) generation of omni-directional depth maps

(b-1) initial depth map estimation by view-

dependent surface reconstruction

(b-2) refinement of depth map by VDDT

(b-3) view dependent texture mapping

(a) Pre-processing stage

(b) Image rendering stage

Fig. 2. Pipeline of proposed free-viewpoint image rendering framework.

RTK-GPS, and an odometry sensor are mounted on a vehicle,
and the 3D point cloud of a surrounding environment with
absolute position and omni-directional images can be easily
collected by driving the vehicle.
(a-2) Generation of omni-directional depth maps

In order to remove fattened-/cut-silhouettes in generated
images, we estimate an omni-directional dense depth map
for each omni-directional image using both the 3D point
cloud and the omni-directional image (Figure 3). Here, for
each viewpoint, we first select the visible 3D points out of
the 3D point cloud by comparing the distances from the
viewpoint to the 3D point and estimate the surface by using
the surface reconstruction technique by Lianget al. [5]. After
removing the hidden points that exist on the far side of
the reconstructed surface, sparse depth data generated by
projecting selected 3D points (Fig. 3 (b)) are converted to
a dense depth map (Figure 3 (d)) using the image data. For
compensating infinite depth region including the sky region,
we first divide the omni-directional image into the sky region
and the ground region based on the intensity of the pixels.
After that, as shown in Figure 3 (c), the ground region of
the omni-directional image is segmented by the watershed
segmentation algorithm [12] using the projected point as a
seed of each segment, and the depth value for every pixel is
filled based on the segments with the depth of the seed.

C. Image rendering stage

(b-1) Initial depth map estimation by view-dependent
surface reconstruction

In the image rendering stage, we first estimate an initial
depth map by applying Liang’s surface reconstruction tech-
nique [5] with a view-dependent manner. More concretely,
for each pixel on an image of a virtual camera, 3D points
that exist around the ray from a viewpointĉv of the virtual
camera to the direction of the pixel on the image plane are
selected first. Using selected 3D points, the closest depth,
for which the score function defined in the paper [5] gives a
local maximum, is selected. Figure 4 shows an example of
the estimated initial depth map and the generated image. As
shown in this figure, generated image with the initial depth

(b) re-projected 3D point cloud

(c) segmented image (d) dense omni-directional 

depth map

(a) original image

Fig. 3. Dense depth map estimation using both 3D point cloud and image.
A pixel colored in pink indicates an infinity depth value.

(a) depth map (b) free-viewpoint image

cut-silhouette

fattened-silhouette

Fig. 4. Depth map and free-viewpoint image with fattened/cut-silhouette.

map has fattened-/cut-silhouettes.
(b-2) Refinement of depth map by VDDT

In order to reduce the fattened-/cut-silhouettes, we employ
view-dependent depth test (VDDT). The idea is inspired by
Yang’s method [9], but we extend the test scheme to handle
both two problems with a noisy input. VDDT consists of
fattened-silhouette removal and cut-silhouette compensation
as follows.

(i) Fattened-silhouette removal: Fattened-silhouette is de-
tected for each pixel by checking the consistency of the
depths prepared in the pre-processing stage. As shown in
Figure 5, 3D position̂px for target pixelpx is recovered using
the initial depth. This 3D position̂px is then projected onto
the original images of the top N-nearest camera positions
ci(i = 1 . . .N) and 3D positionpi which is recovered using
the projection result for̂px to ci is acquired. Using these
recovered 3D points, the consistency of estimated depths for
the 3D positionpx is evaluated as the sum of weighted errors
as follows:

Err(px) =
∑

i wi ||pi − p̂x||∑
i wi

,

wi =

 1
θ+λ||p̂x−ci || ; ||p̂x − ci || ≤ ||pi − ci ||
0 ;otherwise

,

(1)

where θ in [0, π] is defined byθ = ∠ĉvp̂xci as in Figure 5
andλ is a pre-defined parameter. Using this error function, an
initial depth that is inconsistent with the depths on original
images is detected. For the pixels for whichErr exceeds a



Original camera

Virtual camera

Fig. 5. Parameters in VDDT.

given threshold, we find another depth value that greater than
||p̂x − ĉv|| using the method [5]. Figure 6 shows an example
of function Err and a depth map after refinement. From this
figure, we can see that fattened-silhouettes of objects are
successfully removed.

(ii) Cut-silhouette compensation: After removing fattened-
silhouettes, missing surfaces in the estimated depth map are
compensated. For detection of cut-silhouettes, we use the
same functionErr defined in Eq. (1) with different weight
ŵi :

ŵi =

 1
θ+λ||p̂x−ci || ; ||p̂x − ci || > ||pi − ci ||
0 ;otherwise

. (2)

We judge the pixels, whereErr with weight ŵi exceeds a
given threshold, as cut-silhouettes and for these pixels, we
find an alternative depth value using the image-based free-
viewpoint rendering technique proposed by Satoet al. [11].
Figure 7 shows an example of the functionErr with ŵi and
a compensated depth map where cut-silhouettes of objects
are compensated.
(b-3) View-dependent texture mapping

For each pixel in the image for a virtual camera, its color is
determined from omni-directional images which are acquired
in the pre-processing stage (a-1). Here we employ the view-
dependent texture mapping technique by Satoet al. [11] to
determine the pixel color.

IV. Experiments

In this section, we verify the applicability of the proposed
framework for evaluation of image processing algorithms on
vehicle safety systems. For this purpose, we have compared
the outputs of the white line detection algorithm [13] for
real images and virtual images generated by the proposed
framework. Figure 8 shows a 3D point cloud and an example
frame of the omni-directional image sequence for the road
and the surroundings acquired by Topcon IP-S2 [6] for
this experiment. While capturing these data, real images for
the comparison were also taken by two real camera units
(Point Grey Research: Flea3) mounted on the vehicle at the
positions shown in Figure 9. Table 1 shows parameters of
the real cameras used in this experiment.
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Fig. 6. Fattened-silhouette removal result.
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Fig. 7. Result for compensating region of cut-silhouette.

From acquired data, we have generated two image se-
quences (31 frames for each sequence) for two virtual
cameras that simulate a 60 m drive with the speed of 36
km/h. The camera parameters and camera paths of two
virtual cameras were manually set to be the same as those
of the external cameras. Table 2 shows the translation and
rotation of the virtual cameras from the omni-directional
camera. As shown in Figure 10 (a), a generated virtual image
had some differences from a corresponding real image in the
tone of color and the bottom part of the image where the
vehicle was framed-in in the real image, and disappeared in
the generated image. For reducing undesired effects due to
these differences, we manually adjusted the tone of color of
generated images and cropped the bottom parts (8% for the
center camera and 10% for the right camera) of both real
and generated images (Figure 10 (b)).

Figure 11 shows comparison between real images and
virtual images generated by the proposed framework. As we
can see in this figure, very similar images to the real images
were successfully generated except for tiny artifacts.

Figure 12 shows white lines detected by the existing
method [13] in the images shown in Figure 11. Offset
positions of white lines detected from the center and the
right camera positions are shown in Figure 13. For the center
camera, the average absolute differences between pairs of
offset positions for the real and virtual cameras were 37 mm
and 24 mm for the right and left white lines, respectively.
For the right camera, they were 35 mm and 25 mm. The
difference is reasonable considering the stability and the
accuracy of the white line detection algorithm.

This evaluation was done for a very short video sequence
as the first step of the development. We recognize the neces-



Table 1. Specifications of the camera units.

resolution 640× 512 px.
field of view 67 × 56 deg.

Table 2. Translation and rotation of virtual cameras from omni-directional
camera.

centercamera right camera
vertical translation -70.8 cm -72.8 cm

horizontaltranslation 1.4 cm 40.4 cm
yaw rotation 0.0 deg. 3.5 deg.

Fig. 8. Acquired 3D point cloud (left) and omni-directional image (right).

omni-directional

camera

external

center camera

external

right camera

Fig. 9. Positions of the camera units.

sity for doing a large scale evaluation with various algorithms
using the proposed framework. One remaining problem of
such a large scale evaluation is computational cost for
generating images. Currently, using Intel(R) Core(TM) i7-
3970X (and nVidia GTX680 in the processes (a-2), (b-
1)), generating one omni-directional depth map in the pre-
processing stage took 58 minutes and generating one free-
viewpoint image in the rendering stage took 72 minutes, on
average.

V. Conclusion

In this paper, we have proposed a free-viewpoint image
rendering technique and outputs of the white line detection
algorithm have been compared using real images and virtual
images generated by the proposed framework. From the
results, the errors of detected positions of white lines were
very small. This indicates the applicability of our free-
viewpoint image rendering framework as an alternative to
the real images to evaluate image processing algorithms on
vehicle safety systems. In the future, we will improve the
efficiency of the proposed framework and its implementation,
and we will conduct a large scale evaluation with various
image processing algorithms on vehicle safety systems and
various driving situations.

(a) original real image (left) and generated image (right)

(b) edited real image (left) and generated image (right)

Fig. 10. Adjustment of a tone of color and cropping of bottom part of
images.
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(a) center camera (b) right camera

Fig. 11. Comparison of real images (left column) and virtual images (right column) for corresponding positions.
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Fig. 12. Result of white line detection for real images (right column) and virtual images (left column).
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Fig. 13. Offset positions of detected white lines for real and virtual images.


