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PAPER

Generation of a Zoomed Stereo Video Using Two Synchronized
Videos with Different Magnifications∗

Yusuke HAYASHI†a), Norihiko KAWAI†, Tomokazu SATO†, Miyuki OKUMOTO††, Members,
and Naokazu YOKOYA†, Fellow

SUMMARY This paper proposes a novel approach to generate stereo
video in which the zoom magnification is not constant. Although this has
been achieved mechanically in a conventional way, it is necessary for this
approach to develop a mechanically complex system for each stereo camera
system. Instead of a mechanical solution, we employ an approach from the
software side: by using a pair of zoomed and non-zoomed video, a part of
the non-zoomed video image is cut out and super-resolved for generating
stereo video without a special hardware. To achieve this, (1) the zoom
magnification parameter is automatically determined by using distributions
of intensities, and (2) the cutout image is super-resolved by using optically
zoomed images as exemplars. The effectiveness of the proposed method is
quantitatively and qualitatively validated through experiments.
key words: stereo video, super-resolution, energy minimization

1. Introduction

Stereoscopic displays including 3D TV, on which viewers
can see stereoscopic vision with or without special glasses,
have become popular through the evolution of display de-
vices. In order to make contents of real scenes for stereo-
scopic displays, typically, two approaches have been em-
ployed: One uses two identical video cameras that are ar-
ranged in parallel, and the other converts 2D video, which
is captured using a single video camera, to 3D [2]. Here, we
focus on the situation where the optical zoom magnification
is changed while video capturing.

When using two cameras, a straightforward way to
handle this situation is to develop a stereo camera system
that has two special functions: Synchronization of the opti-
cal zoom magnifications and the directions of two cameras’
optical axes. However, such a system is mechanically com-
plex, and one problem is that a unique system is required for
each kind of stereo camera unit, which results in increasing
the development cost. This is especially true for a 3D digi-
tal cinema camera system such as that shown in Fig. 1 using
4K (4, 096 × 2, 160) or 8K (8, 192 × 4, 320) cameras, be-
cause such a camera has a large zoom-adjusting mechanism.
On the other hand, automatic 2D/3D conversion often gives
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Fig. 1 3D digital cinema camera system consisting of two 4K cameras
and a 3D stereo rig.

unnatural stereoscopic images [2]. Although 2D/3D conver-
sion is often employed in the production of 3D movies, a
large amount of manual work is necessary to remove unnat-
uralness.

In this paper, we propose a different approach from
conventional ones to make zoomed stereo video for the pur-
pose of generating stereo video contents in offline process.
In this study, although we also use two identical video cam-
eras arranged in parallel, a videographer manipulates zoom
magnification of only one of the two cameras while keeping
that of the other fixed. We then generate a high-resolution
zoomed stereo video from a pair of non-zoomed video and
optically zoomed video, which has not previously been at-
tempted. Specifically, we first cut out the part of a non-
zoomed video image that corresponds to the other optically
zoomed image. The cutout part is then super-resolved using
the optically zoomed image as the example, so that it has
the same resolution. This is effective because there is a high
correlation between the target low-resolution image and the
high-resolution image captured by two cameras arranged in
parallel.

This paper is organized as follows: In Sect. 2, conven-
tional methods for super-resolution relevant to our approach
are reviewed. Section 3 presents our proposed method.
Experimental results using the proposed and conventional
methods are presented and discussed in Sect. 4. Finally,
Sect. 5 summarizes this paper.

2. Related Work

Super-resolution methods can be broadly classified into
three categories: Reconstruction-based, example-based and
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filter-based methods. In reconstruction-based methods, in-
put images are super-resolved by aligning multiple low-
resolution images with sub-pixel accuracy [3]–[7]. These
methods have to capture many images of the same scene
without moving objects. Since our target scenes often in-
clude moving objects, this approach is not suitable for our
solution.

On the other hand, in example-based methods, a target
low-resolution image is super-resolved using example high-
resolution images [8]–[16]. Freeman et al. [9] proposed an
example-based learning strategy in which the low-resolution
to high-resolution prediction is learned from generic im-
ages via a Markov network. The quality of resultant images
by example-based methods was improved by introducing
some constraints [10], [12]. Sun et al. [10] extended this ap-
proach using primal sketch priors to enhance edges. Begin
et al. [12] extended this approach by estimating PSF param-
eters. In addition to constraints, the searching techniques
for matching patches were proposed to improve the quality
of super-resolved image [14]–[16]. Low-resolution image
patches of the leaning dataset are enhanced to increase the
accuracy of matching [15]. Hashimoto et al. [16] proposed
a method that efficiently searches for correspondences us-
ing a binary tree dictionary. However, the learning data set
is generally fixed, and thus super-resolution effects are lim-
ited. Baker et al. [14] restricted the category of examples in
the database by considering that the quality of the resultant
image largely depends on the examples.

The filter based methods estimate a high-resolution im-
age from a single low-resolution image by compensating
high-frequency components of the input image [17]–[19].
Although these methods are applicable to many scenes, in
general, filter-based methods obtain less natural and more
blurry results than ones by example-based methods as far as
appropriate examples are used.

In the proposed framework where a cutout image from
the non-zoomed image is enlarged using a super-resolution
technique to the same resolution of the optical-zoomed im-
age, we use the optically zoomed image as an example.
By doing this, we can obtain better results than using the
database from various images as in the conventional meth-
ods because there is a high correlation between the target
low-resolution image and the high-resolution image. In
addition, we can use the epipolar constraint to improve
the speed and precision of matching between the high-
resolution and low-resolution images.

3. Generation of Super-Resolved Stereo Video

In this study, we assume that a target scene is captured by
using two cameras that are set so that their optical axes and
scan lines are parallel (parallel camera configuration). How-
ever, even in the case where image sequences are not cap-
tured in parallel camera configuration, they can easily be
rectified at preprocessing stage. In particular, we calculate
a fundamental matrix between a stereo pair of images cap-
tured with the same magnification. After that, subsequent

Fig. 2 Flow diagram of the proposed method.

image sequences are rectified using the fundamental matrix
for the subsequent processes. In the following, to simplify
our explanation, let the optically zoomed left-eye image be
denoted by L, and the non-zoomed right-eye image by R.

Figure 2 illustrates the flow diagram of the proposed
method. First, a part of the original right image R corre-
sponding to the original left image L is cut out as the cutout
right-eye image Rd (Process I). Next, Rd is enlarged to the
size of L for giving initial values of the super-resolved im-
age Rs (Process II). We then minimize the energy func-
tion, which is defined based on the pattern similarity of
(Rd, Rs) and the consistency of (L, Rs), to super-resolve
the image repeating two processes: search L for a similar
texture (Process III-1) and update all the pixel values in Rs

(Process III-2).
When the input image is a color image, the proposed

method uses RGB channels in Process I. The RGB channels
of the image are then transformed to HSV ones in Process II.
After that, the super-resolution process is then applied to V
(intensity) channel, and H (hue) and S (saturation) channels
are interpolated by bi-cubic interpolation as similar to most
of conventional methods for super resolution, which trans-
form RGB channels to intensity and chromatic ones and use
the intensity one for super resolution. In the following sec-
tions, we detail the methods for cutout and energy minimiza-
tion.

3.1 Cutout of Non-Zoomed Image

To cut out Rd from the original right image R so that its cap-
turing area corresponds to the shooting range of the original
left image L, we estimate transform matrix M that projects
the four corners of the image L onto four points in the image
R, as shown in Fig. 3. Here, transform matrix M is defined
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Fig. 3 Projection of four corners using transform matrix M.

Fig. 4 Example of graph representing average intensities of scan lines.

as

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
s 0 tx

0 s ty
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (1)

Translation parameters tx and ty are determined in advance
by calibrating the zoom center of the camera. Scaling pa-
rameter s (where the zoom magnification is 1/s) is deter-
mined for every frame so that a similarity measure between
Rd and L is maximized.

In this study, the similarity measure is defined based on
the normalized cross-correlation between two graphs gener-
ated using the average intensities of the scanlines in images
L and R, as shown in Fig. 4. To successfully generate stereo
images that can be fused by human eyes, it is important to
align the horizontal lines. Thus, we determine scaling pa-
rameter s using horizontal line rather than the vertical line.
The graph hL(y) of L for computing similarity is generated
so that the vertical axis is the y coordinate of L, and the
horizontal axis is the average pixel value on one horizontal
line. For the graph hR(y), Rd is first cut out from R using
the tentative matrix M and enlarged to the size of L. The
tentative graph hR(y) is then generated from the enlarged Rd

in the same way as for L. The graphs for the R, G and B
components are generated, and the sum of the normalized
cross-correlations for R, G and B are used as a similarity
measure.

For determining the best scaling parameter s using this
similarity, in this study, we basically employ exhaustive
search. Concretely, in the first frame, we search for the op-
timal s by discretely shifting s in a given range. In order
to prevent non-continuous changing of zoom magnification,
in the subsequent frames, a searching range is limited using
the value s determined for the previous frame.

Although stereo camera systems usually consist of the
same type of two cameras, they often output different color
tones because of the individual difference. Therefore, after
cutting out the image Rd using determined M, we adjust the
color tone of Rd so as to be similar with that of the image L

for obtaining pixel correspondences between left and right
images more correctly in the following energy minimization
process and achieving the natural fusion of the generated
stereo video. The R, G and B values of the image Rd are
linearly transformed so that graphs hR(y) for RGB fit the
graphs hL(y) for RGB in a least-squares manner.

3.2 Definition of Energy Function

In this section, energy function E that is used for super-
resolution of the cutout image Rd is defined using two
different kinds of energy terms as given in Eq. (2). Essd

in Eq. (3) represents the pattern dissimilarity between the
super-resolved image Rs and the original left image L, and
Edi f in Eq. (4) represents the intensity difference between
the super-resolved image Rs and the cutout image Rd.

E =
∑

xi∈Rs

{λEssd(xi, x j) + (1 − λ)Edi f (xi, g(xi))}, (2)

Essd(xi, x j) =
∑

p∈W
{Rs(xi + p) − L(x j + p)}2, (3)

Edi f (xi, g(xi)) = {Rs(xi) − Rd(g(xi))}2. (4)

Here, W is a square window in Rs and L. p is a shift vector
to indicate a pixel in W. λ is a weight for balancing the two
terms. xi denotes a pixel in Rs, and x j is a pixel from L.
Rs(xi), Rd(xi) and L(xi) represent the intensities of pixel xi

in images Rs, Rd and L, respectively. g(xi) denotes a pixel
position in Rd that corresponds to pixel xi in Rs. The rela-
tionship is

g(xi) =M′xi, (5)

where matrix M′ is the same as matrix M except that the
translation parameters are 0. Essd represents the effect of in-
creasing the resolution of the generated image, and Edi f rep-
resents the preservation of the texture of the original right-
eye image.

3.3 Iterative Energy Minimization

Energy function E is minimized by iterating the following
two processes: search for similar patterns in L (Process III-1)
and update pixel values in Rs (Process III-2). This iteration
is stopped when the number of iterations reaches a given
threshold.

3.3.1 Search Process III-1

The whole pixel values in Rs are fixed, and the position f (xi)
of the texture pattern most similar to xi is updated so as to
satisfy the following equation.

f (xi) = argmin
x j∈φ(xi)

Essd(xi, x j), (6)

where φ(xi) is the search region of L that corresponds to the
pixel xi in the generated image. φ(xi) includes a set of pixels
on the epipolar line and several pixels above and below the
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epipolar line with consideration of calibration errors in the
estimation process.

3.3.2 Update Process III-2

The pixel values Rs(xi) in the generated image are updated
in parallel so as to minimize energy function E defined in
Eq. (2) while keeping all the similar pairs fixed. Energy
function E is resolved into the element energy E(xi) for each
pixel xi in Rs.

E(xi) = λ
∑

p∈W
{Rs(xi) − L( f (xi + p) − p)}2

+ (1 − λ){Rs(xi) − Rd(g(xi))}2. (7)

Each element energy includes only one parameter and the
total energy E consists of the sum of all element energies.
Therefore, E can be minimized by minimizing each element
energy. Rs(xi) that minimizes E(xi) can be calculated by
differentiating E(xi) with respect to Rs(xi), and is

Rs(xi)=
λ
∑

p∈W L( f (xi+p)−p)+(1−λ)Rd(g(xi))

λNW+(1−λ) , (8)

where NW denotes the number of pixels in the window.

3.4 Coarse-to-Fine Approach

In order to reduce the computational cost and avoid local
minima, we use a coarse-to-fine approach for energy mini-
mization. We first generate an image pyramid. In the coars-
est level, the above Processes III-1 and III-2 are iterated until
the energy converges. In subsequent levels, the generated
texture in the previous level is used for the initial pixel val-
ues. Processes III-1 and III-2 are iterated until convergence
where the search area for each pixel in Rs in Process III-1
is limited to a range around the memorized corresponding
position in the previous level. In addition, in the finest level,
we repeat the energy minimization while reducing the size
of the window. This enables more detailed textures to be re-
produced. This also reduces the effect of the disparity in the
corresponding patterns between left and right images.

Fig. 5 Examples of input stereo pairs with different zoom magnifications of two scenes. From left to
right: simulated non-zoomed right-eye image, three simulated optically zoomed left-eye images with
different magnifications (1.2, 1.6, 2.0).

4. Experiments

In order to demonstrate the effectiveness of the proposed
method, we have performed experiments using stereo im-
ages from stereo image datasets [20], [21] and real stereo
videos captured using 3D digital cinema camera system as
shown in Fig. 1. In the experiments, we empirically deter-
mined the window size W for each dataset. We set the num-
ber of iterations as five for each dataset by experimentally
confirming that the energy almost converges with five itera-
tions in most of the cases.

We first confirmed the validity of the estimation of
the zoom scale in Process I with preliminary experiments.
Then, the super-resolved results by the proposed method are
compared with the results of baseline methods. Finally, we
analyze the computational cost of the proposed method.

4.1 Preliminary Experiments: Confirmation of Validity of
Zoom Scale Estimation

In this section, we confirm the validity of the scale estima-
tion method described in Sect. 3.1 in simulation. In this ex-
periment, we used two stereo pairs of images (right and left
images with 4, 096 × 2, 160 pixels) extracted from two real
stereo videos in which the zoom magnifications of the two
cameras were the same. To simulate stereo pairs with differ-
ent zoom magnifications, the right-eye images were resized
to half of the original size as non-zoomed images and the
left-eye images were cut out and resized as optically zoomed
images so that the size of the two images became the same.
By doing this, we can simulate the situation where the res-
olution of right-eye and left-eye cameras is 2, 048 × 1, 080
pixels and the magnification of only the left-eye camera is
between 1.0 and 2.0. In this experiment, we cut out each
left-eye image to simulate a zoom, changing the magnifica-
tion from 1.0 to 2.0 with a 0.1 skip and resizing the respec-
tive cutout images to 2, 048 × 1, 080 pixels. Figure 5 shows
examples of input stereo pairs with different zoom magnifi-
cations.

Table 1 shows the estimated zoom magnifications using
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Table 1 Estimated zoom magnifications.

Ground truth 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Estimated result of scene 1 1.001 1.106 1.204 1.300 1.396 1.497 1.613 1.721 1.831 1.908 1.996
Estimated result of scene 2 1.004 1.104 1.203 1.301 1.406 1.504 1.607 1.709 1.806 1.901 2.000

Fig. 6 PSNR with different λ.

the proposed method. The estimated magnifications were
almost the same as the ground truth in many cases, and the
maximum error ratio between the grand truth and the esti-
mated magnifications was 1.7%.

We confirmed that this level of errors do not affect
the stereo fusion by human eyes through a pre-experiment.
However, it largely affects the similar pattern search in Pro-
cess III-1. Therefore, in the following experiments, we have
set the search region φ in Eq. (6) for similar pattern search as
the region containing 10 pixels above and below the epipolar
line for allowing the estimation errors.

4.2 Experiments Using Stereo Image Datasets

In this experiment, we used two stereo pairs of images (Aloe
with 640 × 554 pixels, and Tsukuba with 384 × 288 pixels)
selected from the stereo image datasets [20], [21]. We re-
duced the size of each right image to simulate a stereo pair
of input images with different zoom magnifications. For the
coarse-to-fine approach in this experiment, we did not use
an image pyramid because the input image size was small
enough, but we reduced the window size W from 7 × 7 to
5× 5 and 3× 3 pixels as the energy converges in the original
scale.

First, we verified the results using different λ values
(from 0.0 to 1.0), which balances the two energy terms. For
this simulation, we resized each right image to 1/2 of the
original size and super-resolved the images using the pro-
posed method with the known scaling parameter. Figure 6
shows the PSNR values of the generated images for differ-
ent λ values. From this result, we can confirm that the PSNR
becomes higher as λ approaches 0.6.

Next, we compared the results of three methods: the
proposed method with λ = 0.6, example-based super-
resolution method [16], and bi-cubic interpolation. We re-
sized each right image to 1/2 and 1/4 of the original size.

Figure 7 shows the results that correspond to the two re-
sized ratios using the three methods. By comparing these
images, we can confirm that the proposed method success-
fully reconstructed the high-frequency component. When
the resized ratio was 1/4, the difference was especially no-
ticeable. Figure 8 shows the PSNR values of the results of
each method. The PSNR values of the proposed method are
the highest for both images, when compared with the other
methods. However, as shown in Fig. 9, the image generated
using our method with λ = 1.0 includes some incorrect tex-
ture patterns. This is because similar patterns do not exist
in the optically zoomed high-resolution image due to occlu-
sions.

4.3 Experiments Using Real Stereo Videos

In order to show the practicality of the proposed method,
we have conducted the experiment with objective evaluation
using real 4K dataset. Here, we captured two stereo videos
(Scene A and Scene B) with 4, 096 × 2, 160 pixels using the
3D digital cinema camera system, as shown in Figs. 10 (a),
10 (b), 11 (a) and 11 (b)). We changed the magnification of
the left camera and kept the right magnification fixed. In
the proposed method, λ = 0.6, as was suggested by our pre-
liminary experiments (see Fig. 6). For the coarse-to-fine ap-
proach, we resized the input image to 1/8, 1/4 and 1/2 of the
original size. We set the window size W to be 13×13 pixels.
At the finest level, the window size was reduced to 9×9 and
5 × 5 pixels as the energy converged.

First, we evaluate the quality of each frame of the
generated stereo videos by subjectively comparing the re-
sult of the proposed method with those by the conventional
methods. Figures 10 (c) and 11 (c) show digitally zoomed
right-eye image sequences of two scenes using the pro-
posed method. Figures 10 (d)-10 (f) and 11 (d)-11 (f) show
the closeups of images generated by bi-cubic interpola-
tion, example-based super-resolution [16] and the proposed
method.

From Figs. 10 (f) and 11 (f), we can confirm that the
texture generated by the proposed method is clearer than
that by both bi-cubic interpolation and the method in [16].
In addition, we can see the difference of ground color
with Figs. 10 (b) and 10 (c) is much smaller than that of
Figs. 10 (a) and 10 (b). Figure 12 shows histograms for (a)
the input cutout and enlarged right-eye image without color
adjustment, (b) input left-eye image and (c) generated right-
eye image when the estimated zoom magnification is 2.338
in Fig. 10. From the figure, we can also confirm that our
method compensated for the color tone of the generated
right-eye image.

Next, we objectively evaluate the quality of the gener-
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Fig. 7 Super-resolved results by three methods.

Fig. 8 PSNR of all test images.

ated stereo videos by giving a questionnaire to eight sub-
jects using a head mounted display (SONY HMZ-T1: 1980
× 1080 pixels) for showing stereo videos. In this evalua-

Fig. 9 Example of unnatural texture generated due to occlusions (from
left to right: generated image, incorrect texture pattern, ground truth).

tion, we prepared special videos from six video sequences
by horizontally arranging two of three methods generated by
above three methods as shown in Fig. 13. In order to eval-
uate all the combinations of three methods with this layout
for six video sequences, we have prepared 18 special videos.
The resolution of the special videos is adjusted to that of the
HMD. For the questionnaire, the subjects were requested to
watch the special videos and responded to the following two
questions:
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Fig. 10 Input image sequences and generated results for Scene A. (a) input right-eye images (the
dotted rectangles show the cutout regions), (b) input left-eye images, (c) digitally zoomed right-eye
images using the proposed method, (d)-(f) cutout regions of interest from digitally zoomed right-eye
images using three methods (from left to right: bi-cubic interpolation, example-based SR [16], proposed
method).
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Fig. 11 Input image sequences and generated results for Scene B. (a) input right-eye images (the
dotted rectangles show the cutout regions), (b) input left-eye images, (c) digitally zoomed right-eye
images using the proposed method, (d)-(f) cutout regions of interest from digitally zoomed right-eye
images using three methods (from left to right: bi-cubic interpolation, example-based SR [16], proposed
method).
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Fig. 12 Example of histograms of R channel for three images when the
estimated zoom magnification is 2.338 in Fig. 10 (The vertical axis indi-
cates the number of pixels and the horizontal axis indicates the intensity
value).

Fig. 13 Example of special video in which two results by the different
methods are displayed in the upper and lower parts, respectively (In this
figure, upper right-eye video is by bi-cubic interpolation, and lower right-
eye video is by the proposed method). Subjects watch the fused video by
displaying the left image on the left display and the right image on the right
display in an HMD.

• Q1: Which stereo video is sharper?
• Q2: Which stereo video is more natural?

The subjects were allowed to answer the questions by select-
ing one of following the three answers: upper video, lower
video, no difference. We randomized the order of special
videos presented to the subjects, and allowed them to repeat-
edly watch the video until they answered the questions. The
results of the evaluation are shown in Table 2. Each grid in
the tables shows the number of answers in which the method
in the row obtained “sharper” or “more natural” compared
to the method in the column. From Table 2 (a), we can con-
firm that the proposed method obtained the larger number
of wins than the conventional methods for sharpness, but

Table 2 Experimental results of the questionnaire. Each grid in the ta-
bles shows the number of answers in which the method in the row obtained
“sharper” or “more natural” compared to the method in the column.

(a) Number of answers in which the method in the row is sharper than
that in the column (Q1).
������win

lose
Bi-cubic Example [16] Proposed total

Bi-cubic - 16 12 28
Example [16] 17 - 12 29

Proposed 23 26 - 49

(b) Number of answers in which the method in the row is more natural
than that in the column (Q2).
������win

lose
Bi-cubic Example [16] Proposed total

Bi-cubic - 18 19 37
Example [16] 13 - 16 29

Proposed 20 15 - 35

subjects sometimes gave better evaluation to the conven-
tional methods than the proposed one. From the result, the
proposed method is more effective to generate sharp stereo
videos than the conventional ones in many cases. However,
we also confirmed that the perception of some people often
can compensate for the difference in sharpness when fusing
two images even if the sharpness of the right and left im-
ages is different. From Table 2 (b), we can confirm that the
number of wins for the proposed method is almost the same
as bi-cubic interpolation. From the result, we confirmed that
the naturalness of the result of the proposed method is not so
different from those by the conventional ones although the
proposed method sometimes generated unnatural textures as
a video because it super-resolves the input image frame by
frame. The evaluation results demonstrate the effectiveness
of our method for generating zoomed stereo videos for real
scenes.

4.4 Analysis of Computational Cost

We analyze the computational cost of the proposed method.
For the real stereo videos with 4,096 × 2,160 in Sect. 4.3,
approximately five minutes were required to generate each
stereo pair of images using a PC (Intel Core i7 3.40GHz
of CPU and 8.00 GB of memory). For example, for the
frame with estimated zoom magnification 2.000 in scene A
as shown in Fig. 10 (ii), it took 30, 1, 205, and 6 seconds for
steps (I), (II), (III-1), and (III-2), respectively. From the re-
sults, we confirmed that the searching process (Process III-1)
occupies the large part of the computational time. In our
unoptimized implementation for the searching process, we
calculate the sum of squared differences (SSD) between a
window centered at a pixel in Rs and windows centered at
pixels in the searching area, which is a set of pixels on the
epipolar line and 10 pixels above and below it, and the cal-
culation is iterated for all the pixels in Rs. Therefore, the
large number of SSD calculation causes the high computa-
tional cost.

One of the solutions to reduce the computational cost
is to employ the searching algorithm used in the stereo
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Fig. 14 Duplicated calculation of squared differences.

matching field, which omits the duplicated calculation of
the squared differences [22]. As shown in Fig. 14, differ-
ent pairs of windows between left-eye and super-resolved
right-eye images calculate a squared difference between the
same pair of pixels. Therefore, when the number of pixels
in a window is NW , the same calculation of a squared dif-
ference is iterated NW times. To avoid this problem, we can
first calculate the disparity space image (DSI) [22], which
is the squared difference of two images, one of which is
shifted a certain pixels. We then calculate the summation
of values in the DSI over pixels in a window to obtain the
SSD value. By doing this, we can reduce the computational
cost for calculating squared differences to 1/NW while the
cost for the summation does not change. Suppose that the
operation costs for addition, subtraction, and multiplication
are same, the total searching cost becomes about one third.
Therefore, in the case of this experiment, the time to gener-
ate each stereo pair of images is expected to reduce to about
two minutes with ignoring the overhead.

Even if the computational cost is reduced by the
method mentioned above, the computational cost of the pro-
posed method is still higher than the comparative methods
for which it takes less than 1 second. However, consider-
ing the applications such as movie generation, we think the
proposed method is useful for the practical applications, e.g.
like 4K stereo movie generation.

5. Conclusion

We have proposed a novel system for generating a zoomed
stereo video from two synchronized videos with different
magnifications. In the proposed method, the non-zoomed
video image is cut out and super-resolved by energy mini-
mization for generating stereo video without special hard-
ware. In order to achieve this, (1) the zoom magnification
parameter is automatically determined by matching distri-
butions of intensities, and (2) the cutout image is super-
resolved by using optically zoomed images as exemplars. In
experiments using stereo datasets and real videos, we have
demonstrated the effectiveness of the proposed method by
comparing our results with baseline methods. In the future,
we will focus on improving the quality of the generated
image by considering occlusions. In addition, we should
reduce the computational cost using efficient searching al-
gorithms, e.g. the method in [22] employed in the stereo
matching field.
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