
AR Marker Hiding with Real-time Texture Deformation

Norihiko Kawai∗ Tomokazu Sato† Yuta Nakashima‡ Naokazu Yokoya§

Nara Institute of Science and Technology

ABSTRACT

Augmented Reality (AR) marker hiding is a technique to visually
remove AR markers from a real-time video stream. The conven-
tional approach transforms a background image with a homography
matrix calculated on the basis of a camera pose and overlays the
transformed image on the AR marker region in the real-time frame,
assuming that the AR marker is on a planar surface. However, this
approach can cause discontinuities in textures around the boundary
between the marker and its surrounding area when the planar sur-
face assumption is not satisfied. This paper proposes a method for
AR marker hiding without discontinuities around texture bound-
aries under unknown and nonplanar background geometry. The
proposed method estimates dense motion in the marker’s back-
ground based on feature point correspondences around the marker,
together with a smooth motion assumption, and deforms the back-
ground image according to the dense motion. Experimental results
demonstrate the effectiveness of the proposed method in various
environments with different background geometries and textures.

Index Terms: H.5.1 [INFORMATION INTERFACES AND PRE-
SENTATION]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

With the commodification of smartphones, tablets, and portable
game consoles, applications that use augmented reality (AR) to
overlay various objects on a real-time video stream of a real envi-
ronment, such as furniture arrangement simulation and AR games
with virtual characters, are becoming increasingly available. Such
applications must estimate the camera pose in real time, and various
approaches have been employed to accomplish this, e.g., simulta-
neous localization and mapping (SLAM) and AR marker-based ap-
proaches [6, 10, 14]. Although SLAM-based approaches [10, 14]
have been developed intensively, the marker-based approach [6] is
widely adopted because of the ease by which virtual objects can
be placed at the user’s desired positions and its robustness against
various textures and shapes in a scene. However, the marker-based
approach requires visible AR markers, which can hinder seamless
fusion of the real environment and the virtual objects.

Some methods that attempt to visually remove the AR markers
from a real-time video stream without incurring user burden have
been proposed to address this problem. Siltanen et al. [15] synthe-
sized a background image by mixing several pixel values around the
marker for each frame and replaced the marker region with this im-
age. This simple method works quite quickly but may cause signif-
icant visual artifacts, especially for complex textures. Korkalo et al.
[11] and Kawai et al. [8] have proposed AR marker hiding based on
a planar assumption, in which the AR marker and the background

∗e-mail: norihi-k@is.naist.jp
†e-mail: tomoka-s@is.naist.jp
‡e-mail: n-yuta@is.naist.jp
§e-mail: yokoya@is.naist.jp

surface are on the same plane. These methods generate background
images by applying image inpainting to the marker regions in a
certain frame in a real-time video stream and overlay the back-
ground images on a newly captured frame by transforming them
with a homography matrix. These methods also adjust image inten-
sities in the generated background to reduce discontinuities around
the boundaries between the marker regions and their surroundings,
which are caused by changes in lighting conditions. However, these
methods can suffer from discontinuities on the boundary, because
the marker is often placed on a nonplanar surface or it is attached
to a thick base, such as cardboard, so that the marker cannot bend.

For AR marker hiding, using diminished reality (DR) technol-
ogy, which visually removes a variety of real objects in real time, is
also a promising approach. Among diminished reality methods,
methods that use preliminarily captured background images and
those that use image inpainting are possible ones.

The methods in [2] and [12] preliminarily capture multiple back-
ground images in which occluding objects are removed or collects
images that captures a target scene from the Internet to obtain back-
ground images. These methods then overlay the background image
on target object regions in the real-time frames to visually remove
the target objects. The main challenges in such methods are find-
ing an image that is suitable for the current frame from a num-
ber of background images and transforming the background image
to seamlessly overlay it on the frame. Cosco et al. [2] selected
background images based on view-dependent texture mapping cri-
terion [3] and rendered a background image for the frame assuming
that the background geometry is available as a mesh model. Li et
al. [12] searched the Internet for images captured from a position
that is close to the current frame and transform the image using
a homography matrix. To address the previously mentioned chal-
lenges, these methods must satisfy one of the following conditions:
(i) the background geometry must be known or should be possible
to be reconstructed with high accuracy; or (ii) the images must be
densely captured from various viewpoints. Unless one of these con-
ditions is satisfied, it is difficult to seamlessly overlay background
images on real-time frames.

Methods using image inpainting can be classified into those that
generate a background image for each frame [4, 5] and those that
generate a background image in a certain frame and geometrically
and photometrically adjust for other real-time frames [7]. The for-
mer approach can generate a plausible background image for each
frame in many cases; however applying image inpainting to each
frame can cause temporal inconsistency in the target region. As-
suming that the background geometry is approximated by multiple
local planes, the latter transforms a background image generated for
a certain frame using a homography for each plane in each frame.
However, this method can also suffer from texture discontinuities
on the boundary between the target region and its surrounding if
the background geometry assumption is not satisfied.

In this work, considering a scenario in which users wish to hide
markers in AR applications without burden, we propose a method
for AR marker hiding. In the proposed method, users can visually
remove markers that are possibly fixed to the environment from
the real-time video stream with unknown background geometry
and marker thickness. The proposed method obtains a background
image by capturing a single image before placing a marker or by

(II) Marker hiding for every frame

(II-1) Capture a frame

(II-2) Estimate a camera pose

(II-6) Overlay the background image

(II-3) Rectify the frame

(I’-1) Capture an image

with a marker

(II-5) Adjust color of the background image

(I) Obtainment of background image

(I’-2) Rectify the image

(I’-3) Inpaint the image

N
e

x
t fra

m
e

(II-4) Deform the background image

(II-7) Display the marker-less frame

Rectified background image

(I-1) Capture a

background image

(I-2) Place a marker

Preliminary capturing Image inpainting

(I-4) Detect feature points and calculate confidences

(I-3) Rectify the image

Figure 1: Flow diagram of the proposed marker hiding method.

applying image inpainting to an image with a marker. Given a
new frame from the real-time video stream, the proposed method
overlays the background image on the marker region with geo-
metric deformation and photometric adjustment. To relax the pla-
nar assumption, our method estimates the pixel-wise motion of the
marker’s background to deform the background image according to
the estimated motion and overlays the deformed image on real-time
frames. This approach reduces discontinuities on the boundary be-
tween the marker region and its surroundings.

2 OVERVIEW OF AR MARKER HIDING

Figure 1 shows a flow diagram of the proposed AR marker hiding
method. The proposed method consists of two processes: (I) ob-
taining a background image and (II) hiding an AR marker in each
frame in a real-time video stream.

In process (I), the proposed method first obtains a background
image without a marker by either preliminarily capturing an ac-
tual background or by applying an image inpainting technique to
the AR marker region. As shown in Fig. 2, when capturing the
background image preliminarily, we first capture a background im-
age (I-1) and subsequently place a marker while the camera pose is
fixed (I-2). Next, a homography matrix is determined to transform
the image with the AR marker in (I-2) so that the marker can be
a square. The homography matrix then transforms the background
image captured in (I-1) to obtain a rectified background image B
in (I-3). Note that for image inpainting, we follow our previous
marker hiding method [8]. Specifically, we first place a marker and
capture an image with a marker (I’-1). The captured image is recti-
fied so that the marker can be a square (I’-2). An image inpainting
method then generates the rectified background image B in (I’-3).
The proposed method then detects feature points around the marker
region in the rectified background image B and calculates the de-
grees of confidence of the feature points (I-4), each of which is an

(I-1) (I-2)

(I’-1) (I’-2)

(I-3)

(I’-3) Rectified

background

image

In the case of preliminary capturing

In the case of image inpainting

B

Figure 2: Obtaining rectified background image B.

autocorrelation of an image patch around a feature point.
In process (II), the proposed method visually removes a marker

from a real-time video stream. It first acquires a frame from the
real-time video stream (II-1) and estimates the camera pose using
the marker in the frame (II-2). The frame is rectified as in process
(I) using the homography matrix obtained on the basis of the cam-
era pose. In process (II), the homography matrix is set so that the
marker’s size can be the same in the rectified frame and the image
obtained in process (I) (II-3). Next, the proposed method finds the
pixels in the rectified frame that correspond to the feature points de-
tected from B (II-4), and then deforms B based on the feature point
correspondences (II-4). Poisson blending [13] is then used to adjust
the color of the deformed image to compensate for the difference
in luminance between the rectified frame and the deformed back-
ground image (II-5). The background image is transformed using
the inverse of the homography matrix obtained in (II-3) and is over-
laid on the marker in the original frame from the real-time video
stream (II-6). Finally, the resulting frame is displayed to the user
(II-7). Note that processes (I) and (II) can be performed simultane-
ously for an image inpainting case as in [8].

In the following sections, we describe feature point detection and
the confidence calculation in (I-4) and real-time background image
deformation (II-4).

3 DETECTION OF FEATURE POINTS AND CONFIDENCE
CALCULATION

In process (I-4) in Fig. 1, the proposed method first determines
marker region Ω, which includes the AR marker but is slightly
larger than the actual marker region in the rectified background im-
age. We also determine the marker’s surrounding region ∂Ω which
is the relative complement of Ω in Ω’s dilated region by l pixels
(Fig. 3). We then detect the feature points in ∂Ω and calculate their
degrees of confidence.

To alleviate discontinuities in textures, the proposed feature point
detector must satisfy the following requirements. (i) Feature points
should be distinguishable from their surroundings to determine re-
liable correspondences. (ii) Feature points should distribute uni-
formly, and feature points on straight edges are acceptable if no
corners exist around them. (iii) The number of detected feature
points should be sufficiently large for accurate motion interpolation.
Considering these requirements, the proposed method employs the
following algorithm for feature point detection, which also provides
the degree of confidence for each feature point as a measure of dis-
tinguishability.

Specifically, as shown in Fig. 3(left), the proposed feature point
detector applies the Laplacian of Gaussian (LoG) filter to the recti-

Ω∂

Ω

Figure 3: Examples of our feature point detection. Left images show
edges extracted with LoG and right images show detected feature
points in region ∂Ω.

fied background image B and finds zero crossing points as feature
point candidates. Then, the degree of confidence is calculated for
each candidate in ∂Ω. The degree of confidence C(xi) is calculated
for pixel i at xi based on autocorrelation of the local patch centered
at xi as follows:

C(xi) =
|Nxi |−∑x′∈Nxi

NCC(B,B)(xi,x′)
|Nxi |

, (1)

where Nxi is a set of pixels in the local patch centered at xi ex-
cluding the pixel at xi and |Nxi | is the number of pixels in Nxi .
NCC(B,B)(xi,x′) is the normalized cross correlation of pixel values
between local patches Nxi and Nx′ in rectified background image B
and is defined as follows:

NCC(B,B)(xi,x′) =
∑c ∑p∈W IB

c (xi +p)IB
c (x

′+p)√
∑c ∑p∈W IB

c (xi +p)2
√

∑c ∑p∈W IB
c (x′+p)2

,

(2)
where IB

c (xi) is the pixel value in channel c (one of red, green, and
blue channels of the pixel in the RGB color space) of the pixel at
xi in rectified background image B, and p is a shift vector in local
patch W . With this definition, a pixel whose patch has low correla-
tion with its surrounding patches has a high degree of confidence.

Next, as shown in Fig. 3(right), the feature point detector picks
feature points from candidates using their degrees of confidence
while maintaining their uniform distribution. For this, the feature
point detector determines candidates as feature points if the candi-
dates satisfy the following conditions in descending order of their
degrees of confidence.

(I) The distance between the candidate and any feature point ob-
tained so far should be greater than L1, where L1 is a constant.

(II) The degree of confidence C of the candidate should exceed
P2% of that of an already selected feature point if the distance
between the candidate pixel and the feature point is less than
L2, where P2 and L2 are constants.

(III) The degree of confidence C of the candidate should be greater
than P3% of that of the first feature point, which has the largest
degree of confidence among the feature points, where P3 is a
constant

Condition (I) prevents the distribution of feature points from be-
coming overly concentrated. Condition (II) inhibits a candidate
with a relatively greater degree of confidence from being selected
when there is another feature point with a greater degree of confi-
dence near the candidate. Condition (III) selects a candidate with a
relatively low degree of confidence when there are no other feature
points with greater degree of confidence around it to prevent the
distribution of feature points from becoming too sparse. Note that
the k-th feature point is denoted by xk in the following.

4 DEFORMATION OF BACKGROUND IMAGE BASED ON MO-
TION INTERPOLATION

Process (II-4) first determines correspondences between the feature
points selected in the marker’s surrounding region ∂Ω in the rec-
tified background image B and pixels in the rectified frame. This
process then interpolates the motion in the marker region Ω and its
surrounding region ∂Ω using the correspondences and deforms the
rectified background image based on the interpolated motion. In the
following sections, we describe the background image deformation
of the f -th frame.

4.1 Correspondence in marker’s surrounding region

Pixel y f ,k is determined in the rectified f -th frame corresponding
to feature point xk in region ∂Ω in the rectified background image
B, essentially by finding a region in the f -th frame that is similar
to the local patch around xk. Note that naı̈vely scanning the entire
image is inefficient. Considering that the proposed method should
find correspondences at a sufficiently high frame rate, the tempo-
ral consistency of the pixels in the f -th and the (f − 1)-th frames
corresponding to xk can be leveraged. Based on this temporal con-
sistency, the proposed method presumes that y f ,k is in the region
G(y f−1,k) centered at y f−1,k. Region G(y f−1,k) can be small be-
cause, even without the planer assumption, a point sufficiently close
to the marker after rectification in (II-3) remains at nearly the same
position regardless of the camera motion. Based on this, the pro-
posed method finds pixel y f ,k corresponding to xk in descending
order of xk’s degree of confidence as follows:

y f ,k = argmax
y′∈G(y f−1,k)

NCC(B, f)(xk,y′)
1+∑xl∈Mxk

Ds(t)
, (3)

where s = xk − xl and t = y′ − y f ,l . Here NCC(B, f)(xk,y′) is the
normalized cross correlation between the patch centered at pixel
xk in rectified background image B and the patch centered at pixel
y′ in the rectified f -th frame (see Eq. (2)). Mxk is the set of the
feature points whose degrees of confidence are greater than xk in a
certain region centered at the feature point xk. This means that Mxk

contains the feature points to which corresponding pixels have been
found in the rectified f -th frame. Ds(t) is a cost term based on the
difference in shift vectors and the distance between feature points,
which is defined as follows:

Ds(t) =

{
0 (d(‖s‖)> ‖t‖)
κ (otherwise)

, (4)

where d(‖s‖) is a monotonically increasing function that gives
higher value as ‖s‖ increases. For example, we use d(‖s)‖) =
‖s‖/10 in our experiments. Ds(t) is a cost function that encour-
ages a feature point to move in a similar manner to the neighboring
feature points. The cost function allows the difference in the shift
vectors ‖t‖ to become greater as the distance ‖s‖ between feature
points increases.

4.2 Motion Interpolation

Using y f ,k corresponding to feature point xk, the proposed method
interpolates the shift vectors from the rectified background image B
to the rectified f -th input frame for all pixels in the marker region
Ω and the marker’s surrounding region ∂Ω in B, and deform the
rectified background image B based on the shift vectors. Note that
the shift vectors of not only pixels in Ω but also pixels in ∂Ω are
required, because pixels in ∂Ω in B may be occluded by the marker
in the f -th frame.

Specifically, based on the assumption that pixels move in a simi-
lar manner to feature points with high degrees of confidence around

them and the motion of adjacent pixels is highly correlated, the pro-
posed method estimates the motion of each pixel in Ω∪∂Ω in B by
minimizing the following energy function:

E = ∑
i∈Ω∪∂Ω

∑
k

ωi,k‖ui −uk‖2 +α ∑
(i, j)∈A

‖ui −u j‖2, (5)

where the summation over k is calculated for all indexes of feature
points, and A is the index set of adjacent pixel pairs in Ω∪ ∂Ω.
Here, ui is the shift vector for pixel i. Shift vector uk for feature
point xk is given by uk = y f ,k − xk. Note that weight ωi,k is cal-
culated based on the distance between feature point xk and pixel
xi as well as the degree of confidence C(xk) of feature point xk as
follows:

ωi,k = max
k

C(xk)exp

(
−‖xi −xk‖2

σ2

)
, (6)

where σ is a constant. Minimization of E in Eq. (5) is equivalent
to solving a symmetric and positive-definite linear system obtained
by setting its partial derivatives with respect to the horizontal and
vertical components of uk to zero. The system’s coefficient matrix
is sparse; thus it can be solved by the conjugate gradient method for
sparse systems, which works efficiently on GPUs (example imple-
mentation is provided in [1]).

Finally, rectified background image B is deformed by forward-
projecting each pixel in image B based on the obtained shift vectors
and linearly interpolating pixel values. Note that our implementa-
tion uses texture mapping provided in OpenGL.

5 EXPERIMENTS

To demonstrate the effectiveness of the proposed method, we per-
formed experiments to visually remove an AR marker using a PC
with a Windows 7, Core i7-990X 3.46 GHz CPU, 12 GB memory,
and a GeForce GTX Titan GPU. We used a USB camera (Logicool
Qcam Pro 9000) to capture real-time input video streams, each of
whose frames consists of 640 × 480 pixels. We used ARToolkit[6]
for camera pose estimation and a square AR marker with edge
length of 80 mm, which was attached to a relatively thick object
with edge length of 95 mm and thickness of 7 mm, as is shown in
Fig. 4. The proposed method was tested under the following three
environments:

Scene A A curved background geometry with grid-patterned tex-
ture (Fig. 5).

Scene B A planar background geometry with stripe texture
(Fig. 6).

Scene C A step background geometry with grid-patterned texture
(Fig. 7).

Table 1 shows the parameter values used in experiments. To obtain
background images, we used our previous approach [8] for scenes
A and B, which applies an image inpainting method [9] to a rectified
image with a marker. Initially, we captured a single background
image for scene C.

In the experiments, we compared the results obtained by the pro-
posed method ((d) in Figs. 5-7) with those obtained by a conven-
tional approach that uses a homography matrix to transform the
background image with color adjustment ((b) in Figs. 5-7). To con-
firm the effectiveness of the color adjustment, we also show the
results obtained by the proposed method without color adjustment
((c) in Figs. 5-7). (a) and (e) in Figs. 5-7 show the input frames
and the rectified frames with the tracking results obtained by the
proposed method. (f) in Figs. 5-7 shows the deformed images of
the rectified background images in the marker and its surrounding
regions. The first row in each figure shows the results when the

Figure 4: AR marker used in experiments.

camera was mostly static. The second and third rows show the re-
sults when camera motion was in motion. In the following, we
discuss the results obtained for each scene in further detail.

Figure 5 shows the experimental results for scene A. As can be
seen, the appearance of the texture changes around the marker in
the rectified image because of camera motion and the curved ge-
ometry as shown in (e). Thus, (b) demonstrates large discontinu-
ities in the texture around the boundary. In (c), the edges in the
grid pattern are successfully connected on the boundary; however
brightness between the marker and its surrounding regions differs.
Conversely, the proposed method did not yield geometric and pho-
tometric discontinuities in the texture. The proposed method de-
formed the background image (Fig. 5(f)) based on the tracking of
feature points in the marker’s surrounding region.

Compared with scene A, the appearance changes in the texture
of scene B (Fig. 6) do not seem to be significant (Fig. 6(e)); how-
ever displacement of the texture occurs because of the thickness of
the marker base. Thus, the discontinuous straight lines can be seen
in (b) without deformation. Noticeable difference in brightness can
also be observed without color adjustment in (c). The proposed
method yields natural results without significant visual artifacts, as
is shown in (d). For the stripe texture in this scene, the proposed
method does not always yield accurate correspondences between
the feature points detected in the rectified background image and
pixels in the input frame because of the aperture problem. There-
fore, these inaccurate correspondences deform the background im-
age excessively, as is shown in (f). However, this excessive defor-
mation does not cause visual artifacts if the textures in the marker
region and the surrounding region are the same, because the pro-
posed method can compensate for the displacement in a direction
orthogonal to the stripes.

In scene C shown in Fig. 7, the marker was leaned against a step.
The vertical plane is visible in the rectified background image, as is
demonstrated in the first row of (f); however, it can become invisi-
ble in the input frame depending on the camera pose, as is demon-
strated in the input frames in (a) and rectified frames (e). Since
the proposed motion interpolation method assumes smooth motion,
the proposed method cannot handle such discontinuity in shift vec-
tors. This results in visual artifacts as shown in the third row of

Table 1: Parameters and values used in experiments.
Input image 640×480 pixels
Marker size in a rectified image 80×80 pixels
Marker region Ω 140×140 pixels
Width l of surrounding region ∂Ω 15 pixels
L1, L2 11 pixels, 31 pixels
P2, P3 80%, 1%
Range for calculating confidence N 3×3 pixels
Search range G 5×5 pixels
Size of patch W 11×11 pixels
Range for interinfluence
of feature pointsM 50×50 pixels
κ , α , σ 0.001, 1000, 25

(a) Input frame
(b) Result without

deformation

(d) Result by the

proposed method

(e) Feature tracking

in rectified frame

(f) Deformation of rectified

background image

(c) Result without

color adjustment

Figure 5: Experimental results for scene A with a curved shape and a grid texture.

(a) Input frame
(b) Result without

deformation

(d) Result by the

proposed method

(e) Feature tracking

in rectified frame

(r) Deformation of rectified

background image

(c) Result without

color adjustment

Figure 6: Experimental results for scene B with a planar shape and a stripe texture.

Fig. 7. However, the proposed method generated more continuous
texture than the method without deformation on the boundary be-
tween the marker and its surroundings excluding the region of the
vertical plane.

Note that the numbers of detected feature points for scenes A, B,
and C were 24, 20, and 34, respectively, and the frame rates for the
scenes were 4.5, 4.2, and 4.4 fps, respectively.

(a) Input frame
(b) Result without

deformation

(d) Result by the

proposed method

(e) Feature tracking

in rectified frame

(f) Deformation of rectified

background image

(c) Result without

color adjustment

Figure 7: Experimental results for scene C with a step background geometry with grid-patterned texture.

6 CONCLUSION

This paper has proposed an AR marker hiding method based on
real-time deformation of a background image. The proposed fea-
ture point detection and tracking algorithm provides uniformly dis-
tributed feature points, which is desirable for motion interpolation.
The proposed method can achieve real-time pixel-wise deformation
using an energy function that can be efficiently minimized using
GPUs.

In experiments, we confirmed that the proposed texture
deformation-based AR marker hiding method can generate visu-
ally natural images even for a thick AR marker and for nonplanar
background geometries. Note that we have also obtained good re-
sults for a scene with a stripe texture, which suffers from the aper-
ture problem when detecting feature points. However, the proposed
method could not handle scenes with relatively complex geometry,
which causes occlusions according to camera motion, because the
proposed method assumes that the motion of adjacent pixels is sim-
ilar. Future work includes AR marker hiding for a variety of back-
ground geometries at higher frame rates. In addition, we plan to
apply real-time texture deformation to DR techniques that visually
remove various objects from a real-time video stream.

ACKNOWLEDGEMENTS

This research was supported in part by the Ministry of Internal Af-
fairs and Communications SCOPE No. 152107001 and the Japan
Society for the Promotion of Science KAKENHI No. 15K16039.

REFERENCES

[1] Nvidia developer zone (http://docs.nvidia.com/cuda/cuda-
samples/#conjugategradient).

[2] F. I. Cosco, C. Garre, F. Bruno, M. Muzzupappa, and M. A. Otaduy.
Augmented touch without visual obtrusion. In Proc. Int. Symp. Mixed
and Augmented Reality, pages 99–102, 2009.

[3] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering
architecture from photographs: A hybrid geometry- and image-based
approach. In Proc. SIGGRAPH96, pages 11–20, 1996.

[4] J. Herling and W. Broll. Advanced self-contained object removal for
realizing real-time diminished reality in unconstrained environments.
In Proc. Int. Symp. Mixed and Augmented Reality, pages 207–212,
2010.

[5] J. Herling and W. Broll. High-quality real-time video inpainting
with pixmix. IEEE Trans. Visualization and Computer Graphics,
20(6):866–879, 2014.

[6] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for
a video-based augmented reality conferencing system. In Proc. Int.
Workshop Augmented Reality, pages 85–94, 1999.

[7] N. Kawai, T. Sato, and N. Yokoya. Diminished reality considering
background structures. In Proc. Int. Symp. Mixed and Augmented Re-
ality, pages 259–260, 2013.

[8] N. Kawai, M. Yamasaki, T. Sato, and N. Yokoya. Diminished reality
for AR marker hiding based on image inpainting with reflection of
luminance changes. ITE Trans. Media Technology and Applications,
1(4):343–353, 2013.

[9] N. Kawai and N. Yokoya. Image inpainting considering symmetric
patterns. In Proc. Int. Conf. Pattern Recognition, pages 2744–2747,
2012.

[10] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. Int. Symp. Mixed and Augmented Reality, pages
225–234, 2007.

[11] O. Korkalo, M. Aittala, and S. Siltanen. Light-weight marker hid-
ing for augmented reality. In Proc. Int. Symp. Mixed and Augmented
Reality, pages 247–248, 2010.

[12] Z. Li, Y. Wang, J. Guo, L.-F. Cheong, and S. Z. Zhou. Diminished re-
ality using appearance and 3d geometry of internet photo collections.
In Proc. Int. Symp. Mixed and Augmented Reality, pages 11–19, 2013.

[13] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. ACM
Trans. Graphics, 22(3):313–318, 2003.

[14] T. Schöps, J. Engel, and D. Cremers. Semi-dense visual odometry
for AR on a smartphone. In Proc. Int. Sympo. Mixed and Augmented
Reality, pages 145–150, 2014.

[15] S. Siltanen. Texture generation over the marker area. In Proc. Int.
Symp. Mixed and Augmented Reality, pages 253–254, 2006.

