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ABSTRACT

This paper proposes an example-based method to increase the
resolution of a low-resolution image. In the proposed method,
we generate example images by a novel view synthesis tech-
nique using 3D geometry reconstruction and camera pose es-
timation from a video or images capturing the same scene. We
then increase the resolution by minimizing an energy function
by searching for the optimal example from the generated ex-
ample images. The proposed method has less limitations on
camera positions and geometry of the target scene than those
in conventional methods. Experiments demonstrate the effec-
tiveness of the proposed method by qualitatively comparing
the results of the proposed and conventional methods.

Index Terms— Super-resolution, 3D reconstruction, en-
ergy minimization, novel view synthesis

1. INTRODUCTION

With the increase of the resolution of display devices, there
exist emerging demands for techniques of high-resolution
video/image generation from low-resolution one. To meet
the demands, super-resolution techniques have been widely
investigated. Super-resolution methods can be broadly clas-
sified into three categories: filter-based, reconstruction-based
and example-based methods. The filter based methods es-
timate a high-resolution image from a single low-resolution
image by compensating high-frequency components of the
input image [1, 2]. In reconstruction-based methods, input
images are super-resolved by aligning multiple low-resolution
images with sub-pixel accuracy [3, 4, 5]. On the other
hand, in example-based methods, a target low-resolution im-
age is super-resolved using example high-resolution images
[6, 7, 8, 9]. It is necessary for the example-based methods to
use suitable example images because the effect of resolution
enhancement depends on examples [7].

This study considers the situation where we take a video
while walking, and the captured video often includes the
scenes in which some objects are captured from far and near.
In such a video, a pair of low-resolution and high-resolution
textures of the same objects can easily be found. In a differ-
ent scenario, some photos with high-resolution for the same

scene may be found on the Internet. In these situations, where
appropriate examples are available, we think example-based
methods are more effective than other methods. Therefore,
this study focuses on the example-based methods.

As one of the state-of-the-art methods that try to find suit-
able examples, an example-based super-resolution method
has been proposed that retrieves web images capturing the
same scene with a target image [10]. However, in the method,
the example images are aligned to the target low-resolution
image using a single homography matrix. Therefore, it is
difficult to obtain good results when the capturing positions
of example images are different from that of the target image,
and the target scene is not planar.

This paper proposes a method to increase the resolution
of a low-resolution image using example images generated
by a novel view synthesis technique using 3D geometry re-
construction and camera pose estimation from a video or web
images capturing the same scene. Specifically, after recon-
structing 3D geometry of a target scene and estimating camera
poses from input target and reference images, we first warp
the input images to the viewpoint of the target image using the
estimated 3D geometry and camera poses to compensate for
the difference in appearance and make rough correspondences
between images. The warped images used as examples are
then narrowed down using the camera poses for effectively
increasing the resolution. Finally, we increase the resolution
of the low-resolution image by minimizing an energy func-
tion defined based on the spatial frequency and texture simi-
larity between the target and selected example images, which
makes accurate correspondences. The novel view synthesis
and energy minimization enable to have less limitations on
camera poses and geometry of the target scene than those in
the conventional method.

2. PROPOSED METHOD

In our method, the resolution of target image It is increased
using K reference images that capture the same scene as the
target one. Figure 1 illustrates the flow diagram of the pro-
posed method. First, 3D geometry of a target scene is re-
constructed using input images including target and reference
ones (1). Next, the reference images are warped to the view-
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Fig. 1. Flow diagram of the proposed method

point of the target image using the reconstructed 3D geom-
etry, and the warped images are used as example candidates
{Ike |k = 1, · · · ,K} for increasing the resolution (2). The
candidate images are then narrowed down using camera poses
(3). After that, target image It is enlarged by bi-cubic inter-
polation to the size of the target resolution for giving initial
values to generated image Is (4). The final result of Is is ob-
tained by energy minimization using the example images (5).

2.1. 3D reconstruction and image warping

In the proposed method, we estimate camera poses of input
images including both target and reference ones and recon-
struct 3D geometry of the scene by applying Structure from
Motion (SfM) [11, 12] and Multi View Stereo (MVS) [13]
to input images. We then generate a depth map with a tar-
get resolution for each input image from the reconstructed
3D geometry as shown in Figs. 2(a) and (b). Next, the refer-
ence images (Fig. 2(c)) are warped to the viewpoint of the tar-
get image by projecting pixel values of the reference images
using the depth map of the target image and the estimated
camera poses. In warping images, we check the consistency
of depths between the target and reference images, and the
regions of inconsistency caused by occlusions or estimation
errors of 3D model are set as unusable ones as shown in the
red regions in Fig. 2(d).

2.2. Narrowing down of reference images

Generally, the warped image that is generated from the input
image captured near objects includes many higher frequency
components than that captured far from them as shown in
Fig. 3. Based on this fact, we narrow down the warped ref-
erence images so that we can use example images with high-
frequency components in the energy minimization process.

Specifically, we determine the pixels in the warped images
corresponding to a pixel in Is. We then select top T warped
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image)
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Fig. 2. Intermediate images generated by the proposed
method.
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Fig. 3. Comparison of high-frequency textures in warped im-
ages according to the distances from the cameras to the object.

images of the smallest depth values of the corresponding pix-
els. By this way, we independently select T example images
for each pixel in Is.

2.3. Resolution enhancement by energy minimization

The resolution-enhanced image Is of target image It is gen-
erated by minimizing an energy function using the example
images and the original target image. It should be noted that
we do not have pixel values in the warped images for the pix-
els of which depth values do not exist in the depth map of
the target image. For these pixels, we just leave initial val-
ues generated by bi-cubic interpolation. In this process, the
input image is transformed from RGB to YCbCr. After that,
the resolution enhancement process is applied to Y (intensity)
channel, and Cb and Cr (chromatic) channels are interpolated
by bi-cubic interpolation as similar to most of conventional
methods for super-resolution, which transform RGB channels
to intensity and chromatic ones and use the intensity one for
super-resolution. In the following, we first give the defini-
tion of the energy function and then describe the minimization
process.



2.3.1. Definition of energy function

Energy function E is defined using two different kinds of en-
ergy terms as follows:

E =
∑

xi∈Is

{Esr(xi,xj , k) + βEdata(xi)}, (1)

where Esr represents the pattern dissimilarity between gener-
ated image Is and example image Ike , and this term gives the
effect of increasing the resolution of generated image Is using
the texture including high-frequency components in example
image Ike . Edata represents the intensity difference between
generated image Is and original target image It, and the term
gives the effect of preserving the structure of target image It
onto generated image Is. β is a weight for balancing the two
terms. Esr and Edata are defined as follows, respectively:

Esr(xi,xj , k) = ω(xj ,k)

∑

p∈W

{Is(xi + p)− Ike (xj + p)}2,

(2)

Edata(xi) = {Is(xi)− It(Dxi)}2. (3)

Here, xi and xj denote pixels in Is and Ike , respectively.
Is(xi), Ike (xj) and It(xi) represent the intensities of pixels
in images Is, Ike and It, respectively. p is a shift vector to
indicate a pixel in a square window W . D transfers a pixel
position xi in Is to the corresponding pixel in It. ω(xj ,k) is
a reciprocal of the total of the power spectrum values that is
larger than a threshold obtained by Fourier transforming the
window region centered at xj in example image Ike . This
term enables to select an example image with high-frequency
components from the selected T images, which often include
motion blurs and defocuses even after the example images
are narrowed down using the camera poses.

2.3.2. Iterative energy minimization

Energy function E is minimized by iterating the following
two processes: (i) search for similar textures in the selected
example images and (ii) update pixel values in Is.

In the process (i), we determine two parameters, pixel po-
sition xj and example image index k, by searching T example
images for the position xj around which the pattern is most
similar to that around xi so that we minimize Eq. (2). The
searching region is a certain range of L × L pixels around
the coordinate xi in T example images because the example
images are roughly aligned by image warping. The search-
ing compensates for the misalignment caused by geometric
errors. The selected example image index and pixel corre-
sponding to xi are represented by n(xi) and f(xi).

In the process (ii), pixel values Is(xi) in the generated
image are updated in parallel so as to minimize the energy
function E while keeping all the similar texture pairs fixed.
Energy function E is resolved into element energy E(xi) for

each pixel xi in Is:

E(xi) =
∑

p∈W

ω(f(t),n(t)){Is(xi)−In(t)e (f(t)−p)}2

+β{Is(xi)−It(Dxi)}2, (4)

t = xi + p. (5)

E can be minimized by minimizing each element energy
E(xi) because energy E consists of the sum of all element
energies. Is(xi) that minimizes E(xi) can be calculated by
differentiating E(xi) with respect to Is(xi), and is

Is(xi) =
∑

p∈Wω(f(t),n(t))I
n(t)
e (f(t)−p) + βIt(Dxi)∑

p∈Wω(f(t),n(t)) + β
. (6)

3. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed
method by subjectively comparing the results of the proposed
method with those by the conventional methods. In the exper-
iment, we captured two videos consisting of 60 frames with
640×480 pixels while moving a camera in indoor and outdoor
environments as shown in Fig. 4. We selected one image from
the input images as the target image, and the target resolution
is set to 1280 × 960 (magnification factor is 2). We experi-
mentally determined the parameters of the proposed method
as: W = 25× 25, β = 0.0005, L = 10, and T = 5.

Figure 5 shows the results by bi-cubic interpolation (a),
example-based method [9] (b) and the proposed method
(c). From these results, we can confirm that the high fre-
quency components are successfully generated by the pro-
posed method, and the results of the proposed method are
much clearer than those of both bi-cubic interpolation and
conventional example-based method [9]. However, in our
method, we cannot enhance the resolution of the regions that
have no depth values because of the limited area of recon-
structed geometry. Therefore, the unnatural change in the
resolution appears on the boundary of the enhanced and the
other regions as shown in Fig. 6.

4. CONCLUSION

In this paper, we have proposed a method to increase the res-
olution of a low-resolution image using example images gen-
erated by a novel view synthesis technique using 3D geom-
etry. Our contribution is to have less limitations on camera
positions and geometry of the target scene than those in the
conventional methods. Our experimental result has demon-
strated that our proposed method successfully generate high-
resolution images. In future work, we should attempt to en-
hance the resolution of the regions that have no depth values.
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(a) Scene 1 (b) Scene 2

Fig. 4. Examples of input images including a target image (upper left) and reference images.

(a) Bi-cubic interpolation (b) Example based method [9] (c) Proposed method

Fig. 5. Experimental results

Fig. 6. Example of unnatural change in resolution caused by the missing of depth values in the target image
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