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Diminished Reality Based on Image Inpainting
Considering Background Geometry
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Abstract—Diminished reality aims to remove real objects from video images and fill in the missing regions with plausible
background textures in real time. Most conventional methods based on image inpainting achieve diminished reality by assuming
that the background around a target object is almost planar. This paper proposes a new diminished reality method that considers
background geometries with less constraints than the conventional ones. In this study, we approximate the background geometry
by combining local planes, and improve the quality of image inpainting by correcting the perspective distortion of texture and
limiting the search area for finding similar textures as exemplars. The temporal coherence of texture is preserved using the
geometries and camera pose estimated by visual-SLAM (Simultaneous Localization and Mapping). The mask region that
includes a target object is robustly set in each frame by projecting a 3D region, rather than tracking the object in 2D image
space. The effectiveness of the proposed method is successfully demonstrated using several experimental environments.

Index Terms—Diminished reality, Object removal, Image inpainting, Video inpainting, Real-time
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1 INTRODUCTION

DIMINISHED reality, which visually removes real
objects from video images by filling in the miss-

ing regions with background textures in real time,
can be used for various applications. For example,
some pieces of furniture may be removed to simulate
different arrangements (Fig. 1(a)), signboards can be
removed for landscape simulations (Fig. 1(b)), and
augmented reality (AR) markers can be hidden to
achieve seamless fusion between virtual objects and
the real world [1], [2], [3]. Diminished reality meth-
ods can be classified into two categories: One uses
actual background images, and the other generates a
plausible background image from information around
the target object.

The former methods [4], [5], [6], [7], [8], [9], [10] re-
move real objects by using actual background scenes.
In these methods, there are several ways to capture
the actual background. Cosco et al. [4] captured the
background scene beforehand, Li et al. [8] collected
photos from the internet, and Lepetit et al. [7] used
past frames in which the background was captured.
Other methods [5], [6], [9], [10] have employed multi-
ple cameras. These approaches can be used for appli-
cations that need to show actual background images.

For scenes in which the actual background of a tar-
get object cannot be observed, or for cases where it is
burdensome for users to capture the background, it is
necessary to generate plausible background textures.
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(a) Furniture removal

(b) Signboard removal

Fig. 1. Example applications of diminished reality.
Images on the left are inputs, and those on the right
are our results.

For this task, image inpainting techniques, which
generate plausible textures using information from
around the target objects in a static image, have
often been used [1], [2], [3], [11], [12]. In the image
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inpainting-based methods, most use the assumption
that the background geometry is planar, and the
motion of a camera is constrained so that the whole
target object exists in a frame. The inpainted results
are not always comparable to those by the-state-of-art
image inpainting methods.

For these problems, we propose an image
inpainting-based diminished reality method, which is
an extension of [13], assuming that target objects are
fixed in the 3D environment and no dynamic objects
exist in front of or behind those. The proposed
method uses camera poses and geometry in the
scene estimated by Visual-SLAM (Simultaneous
Localization and Mapping), which enables to move a
camera with comparatively free motion and generate
high-quality inpainted results. Especially, we pay
attention to three issues to achieve high-quality
diminished reality: (1) the temporal coherence
of textures, (2) the quality of image inpainting,
and (3) the determination of mask regions in
which foreground textures are to be replaced with
background ones. For these issues, we employ the
following approaches: (1) The temporal coherence for
inpainted textures is preserved using visual-SLAM
in conjunction with a background geometry that
is approximated from multiple local planes. (2) We
employ a semi-dynamic approach which can adopt
a high-quality image inpainting method such as one
that considers geometric and photometric extensions
of texture patterns but usually takes several seconds.
The quality of image inpainting is also improved
based on the generation of multiple rectified images
and a truncated search region. (3) Mask regions are
robustly determined in each frame based on 3D
tracking of the region of interest.

The rest of this paper is organized as follows: The
next section introduces related work and our contribu-
tion. Sections 3 and 4 describe the proposed method.
In Section 5, we show and discuss experimental re-
sults. We conclude this paper in Section 6.

2 RELATED WORK

In this section, we review some related work in con-
sideration of the three issues described above and
describe our contribution.

2.1 Temporal coherence of textures

The method in [11] attempts to reduce texture flick-
ering between frames by propagating patch corre-
spondences in image inpainting from frame to frame.
However, it is insufficient to achieve geometric con-
sistency between frames taken with large camera
motion. To overcome this problem, Herling et al. [12]
improved their original method [11] by employing
a homography, and thus determined the search ar-
eas in the next frame by assuming the background
around the target object to be almost planar. Since the

methods in [1], [3] assume that a target object is an
AR marker and placed on a plane, they also used a
homography calculated from the marker to generate
a background image or synthesize an inpainted result
on an AR marker. These methods successfully pre-
serve the temporal coherence of planar scenes.

However, if the background of the target scene
is not planar, and the scene is observed from quite
different viewpoints, as shown in Fig. 1(a), changes
in the appearance of textures on different geometries
cannot be compensated using a single homography.
This results in the unnatural motion of inpainted
textures. In the proposed method, we approximate the
background geometry of the target objects by com-
bining the local planes. For this, the scene around the
target object is divided into multiple planes, whose
number is automatically determined, and inpainted
textures are successfully overlaid on the target object
by considering the estimated planes and camera-pose
given by visual-SLAM.

2.2 Quality of image inpainting

Siltanen [1] mixed several specific pixel values in a
marker-hiding application. Although this method can
rapidly generate textures, it is difficult to generate
natural and complex textures using such a simple ap-
proach. To synthesize more natural textures for dimin-
ished reality, Herling et al. [11] applied an example-
based image inpainting method [14] and a high-speed
approximate nearest neighbor search [15] with use of
grayscale and reduction of resolution. Moreover, Her-
ling et al. [12] have improved their energy function
by considering spatial costs, enhancing the quality
of inpainting while preserving real-time processing.
However, geometric and photometric expansions of
exemplar texture patterns, which are considered in
the recent image inpainting methods [16], [17] to
deal with flipping and rotating patterns with different
brightness, are difficult to be employed due to the
computational cost. Therefore, results inpainted by
the methods in [11], [12] do not always comparable
to those by such recent image inpainting methods.
In addition, although the methods in [11], [12] apply
image inpainting to the original appearance of the
input image, they often produce unnatural results
especially when an image’s regular patterns have a
distorted perspective and the amount of perspective
distortion is large.

To overcome the problem of computational cost
when using recent image inpainting methods, we
employ a semi-dynamic approach, which conducts
two processes concurrently, as in methods [2], [3]:
image inpainting for a key frame, and the overlay of
the inpainted texture for each frame. In this approach,
though target objects are hidden with incomplete
textures until the image inpainting finishes, advanced
image inpainting methods can be applied.
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To solve the problem of the image quality influ-
enced by perspective distortion, some researchers in-
cluding us have tried to remove the influence. Our
previous marker-hiding method [3] corrected the per-
spective distortion using an AR marker, meaning that
the size of regular texture patterns could be unified
based on the assumption that an AR marker exists on
a plane. In the proposed method, we extend this idea
for more general scenes. In the field of image inpaint-
ing for a static image, some methods are proposed for
perspective correction [18], [19]. These methods suc-
cessfully correct perspective distortions by manually
giving some interactions. However, such interactions
give the user burdens and take some time before start-
ing diminished reality in our situation. Therefore, we
use a 3D geometry to deal with perspective correction.
Specifically, we generate multiple rectified images,
one for each of the estimated planes. In addition to
this, we add a constraint to automatically limit the
search region using geometries around a target object,
thus increasing the quality of inpainted textures, while
the whole input image is searched for similar texture
patterns in the conventional methods.

2.3 Determination of mask regions
Mask regions (those that include target objects) have
to be found in each frame to ensure that the ob-
jects are removed from the image. Objects such as
AR markers [1], [2], [3] can easily be tracked using
software libraries (e.g., ARToolkit [20]), allowing the
mask regions to be determined in real time. In other
cases, various approaches are used to track the target
objects and find the mask regions. For example, an
active contour algorithm has been applied to detect
and track objects [11], but this method is not robust for
textured backgrounds. For this problem, Herling et al.
[12] use their original feature points that store the ap-
pearance of the image, and distribute them around the
target objects. Tracking the feature points segments
the image into the mask and other regions in each
frame. Although this method works well for scenes
with textured backgrounds, it has the limitation that
the entire object must always be in the video frame. In
the previous version of our research [13], we did not
update mask regions through all frames. Therefore,
target objects have to exist almost on the background
object so that the target objects can be in the mask
regions.

In the proposed method, we robustly determine the
mask regions in all frames by tracking the 3D region
including target objects in 3D space that are generated
in a key frame. Projecting the 3D region from the
camera position onto the estimated planes sets mask
regions in each frame of the rectified images, and
ensures that the target objects do not exit the mask
regions. In addition, the target objects do not always
have to be in the video frame, unlike in conventional
methods [11], [12].

However, since the initial 3D region is generated
only from the key frame, the projected mask regions
often become large when the target objects are distant
from the background object and the camera largely
moves from the key frame position, which reduces the
frame rate. For such a case, our method also provides
a user an option to crop the 3D region, which works
with re-inpainting the image with a smaller missing
region.

2.4 Contribution

In summary, our primary contributions to the field of
diminished reality are: (1) the preservation of tempo-
ral coherence for inpainted textures in more general
scenes than conventional methods can handle, (2)
improved quality of image inpainting, and (3) robust
determination of mask regions in each frame. The
first point uses visual-SLAM in conjunction with a
background geometry that is approximated from mul-
tiple local planes. The second relies on the generation
of multiple rectified images and a truncated search
region, the employment of a semi-dynamic approach
with a high-quality image inpainting method, and the
update of inpainted results when the actual back-
ground can be observed. The third contribution is
based on 3D tracking of the region of interest.

3 DIMINISHED REALITY CONSIDERING
BACKGROUND GEOMETRY

Fig. 2 shows the pipeline of the proposed diminished
reality technique. Our method first analyzes the target
scene and carries out the pre-processing of dimin-
ished reality (I). Diminished reality is then achieved
by a semi-dynamic approach that conducts two pro-
cesses concurrently, as in our previous marker-hiding
method [3]: example-based image inpainting for a key
frame (II), and the overlay of the inpainted texture
for each frame (III). Although process (II) is not
performed in real-time, users can start applications
immediately by performing processes (II) and (III)
concurrently. Within several seconds of starting pro-
cess (II), users can experience diminished reality with
a completely inpainted result.

In the proposed framework, the background geom-
etry is required to have a multiple-plane representa-
tion, and the background must have some textures
to enable the extraction of planes and estimation of
camera poses by visual-SLAM. Therefore, the target
scene is a little restricted. However, the proposed
method is applicable in many real environments, be-
cause artificial and natural geometries, such as artifi-
cial tiles, garden trees, and grass ground, often consist
of multiple local planes and have some texture. In the
following, we describe processes (I), (II), and (III) in
detail.
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Fig. 2. Pipeline of the proposed diminished reality
technique.

3.1 Scene Analysis

During pre-processing for the proposed diminished
reality method, the target scene is analyzed and the
image is divided into multiple images to improve the
quality of image inpainting. Specifically, the camera
pose and 3D coordinates of feature points are first es-
timated by initializing visual-SLAM (I-1). A user then
manually selects a region that includes target objects
by enclosing the region, as shown in Figs. 3(a) and (b)
(I-2). In this step, pixels on the line are periodically
and sequentially stored while a user drags the line,
and the pixels and lines connecting them are stored as
the boundary of the target region. The frame when the
user finishes enclosing the region is set as a key frame
and is used for image inpainting in process (II). The
selected 2D region is converted to a 3D target region,
and this is used to set the mask regions in each frame
in process (III). The conversion is performed in the
later step of process (I), described later in this section.

Next, feature points that are outside the target re-
gion and whose chessboard distance from the bound-
ary of the target region is less than a threshold,
which is empirically determined, are picked up, and
neighboring feature points are connected by Delaunay
triangulation [21] from their 2D image coordinates, as
shown in Fig. 3(c). Normal vectors of the generated
triangles are calculated using the 3D coordinates of

(a) Enclosing (b) Selected region

(c) Delaunay triangula-
tion

(d) Normal vectors of
features

(e) Labeled feature
points

(f) Segmented image

Fig. 3. Scene analysis.

feature points, and normal vectors of feature points
are determined by averaging the normal vectors of
all triangles including the feature points, as shown
in Fig. 3(d). Next, each feature point is classified
into multiple groups based on the difference between
its normal vector and the mean normal vector of
all feature points in a group, which is iteratively
updated using mean-shift [22]. It should be noted that
the number of groups is automatically determined.
Specifically, a feature point is first selected at random
as xi (i is the index of feature points), and the normal
vector m is calculated in an iterative manner as:

mt(ni) =
ΣN

j=1w(nj)nj

M
, (1)

w(nj) =

{
1 (nj · mt−1(ni) > C)

0 (otherwise) ,
(2)

where ni and nj indicate the unit normal vectors of
feature points xi and xj . mt(ni) denotes the unit mean
vector in the t-th iteration, and the process starts with
m0(ni) = ni. M is some normalization factor such
that mt(ni) becomes a unit vector. N is the number of
feature points picked up in the above process, and C is
a constant threshold. After several iterations, feature
points nj satisfying nj · mt(ni) > C are labeled as
belonging to the same group, and these points are
removed. Among those that remain, a new feature
point is randomly selected, and the above process is
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repeated until all feature points are labeled, as shown
in Fig. 3(e). Next, a plane is fitted to the feature points
of each group using LMeds (Least Median of Squares)
[23]. The number of planes K is basically the same as
that of labeled groups, but if the number of feature
points in a particular group is much smaller than in
others, the group is removed.

All the fitted planes are projected onto the image
plane, and each pixel is grouped according to which
plane is visible at the pixel of the camera image as
shown in Fig. 4. According to the pixel grouping,
the whole image, including the missing region, is
segmented as shown in Fig. 3(f). In addition, the
3D target region is generated from the 2D selected
region, so the 3D region must include the target object.
Specifically, as shown in Fig. 5, the feature point on
the target object that is nearest the camera position
is first found. The 3D mesh model generated by the
following planes is then set as the 3D target region.

• Estimated plane for background region.
• Plane that includes the nearest feature point and

is parallel to the image plane of the camera.
• Planes between any pair of two rays that pass

through the optical center of the camera and
adjacent two points on the line drawn by the user
around the object to remove (Fig. 3(a)).

Next, the rectified images are generated from the
key frame, and the information for rectifying the
subsequent frames are stored at the same time (I-
5). As shown in Fig. 6, the perspective distortion of
input images is corrected by calculating homography
matrices for K planes as if each plane was captured
by a camera in front of it. The number of rectified
images is the same as the number of planes. We now

Limiting searching region

Inpainting

Rectification

Fig. 6. Rectification and region limitation for inpainting.

describe how to calculate a homography matrix Hk

for plane k.
Here, we associate a 3D length, two directions, and

a position in the scene with a pixel length, horizon-
tal and vertical axes, and a center of the rectified
image. Specifically, we calculate the 3D length lk
corresponding to a single pixel at the center of gravity
gk of the feature points on plane k by projecting a
pixel corresponding to the gravity center and one of
its adjacent pixels onto plane k. We then use two
arbitrary perpendicular vectors of length λlk on plane
k as basis vectors (uk,vk) for the x and y axes of the
rectified image, where λ is a constant that influences
the resolution of the rectified image. The larger the
value of λ, the lower the resolution of the rectified
image. The center of gravity is set as the center of the
rectified image.

Finally, Hk is calculated from the four pairs of
pixels determined by projecting the four 3D points
(gk,gk + uk,gk + vk,gk + uk + vk) on plane k to the
rectified image and the key frame’s input image plane.
Homography matrices are calculated for all the planes
in the same way. The 3D coordinates of the four 3D
points on each plane k and the 2D coordinates of the
corresponding four pixels in each rectified image are
stored and later used for rectifying the subsequent
frames in process (III).

In the final step (I-6), we limit the search region in
which textures can be used as exemplars for inpaint-
ing in process (II) based on the segmented image.
Thus, textures from other planes cannot be used as
exemplars.

3.2 Image Inpainting for Multiple Rectified Images

We apply an example-based image inpainting method
to each rectified image in which a region is limited.
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The rectified images of the key frame in which missing
regions are inpainted are retained for the background
overlay process (III). For image inpainting, the pro-
posed framework can adopt arbitrary example-based
methods that use global optimization, such as those
in [16], [17], [24] and the inpainting part in [12]. In
Figs. 1 and 6, we employ an existing image inpainting
method [17], which allows for brightness compen-
sation and the symmetric transformation of texture
patterns, and runs at relatively high speed.

Specifically in process (II), after initializing param-
eters of the missing regions, e.g., the average value
of boundary pixels, the inpainting method iterates
two processes in order to minimize an energy func-
tion based on the similarity between missing regions
and the remainder of the image. The first process
searches for similar patterns (II-2), and the second
updates pixel values in the missing regions (II-3) in
a similar way to [17]. In each iteration, process (II)
stores the tentative inpainted result in the memory
shared with process (III). After the energy converges,
the completely inpainted result is stored and used in
process (III).

3.3 Real-time Overlay of Inpainted Textures

In process (III), after capturing an image (III-1) and
calculating a camera pose using visual-SLAM (III-2),
a rectified image is generated for each plane using the
current camera pose and information for rectification,
which is stored in step (I-5), (III-3). On each rectified
image, a mask region is then determined by projecting
the 3D target region from the optical center of the
current frame’s camera onto each plane, as shown
in Fig. 7 (III-4). The right-hand images of Fig. 8
show an example of the 3D target region and the
projected mask regions. It should be noted that the
target objects always exist within the projected mask
regions, regardless of the camera pose and projected
mask shapes, because the 3D target region includes
the target objects.

Next, the mask regions of rectified images are filled
in using the texture in the rectified images of the

Key frame Current frame

Input

Input with

target region

(1st and 3rd

column)

Rectified

image 1

Rectified

image 2

Rectified

image 3

Outside

of image

Key frame

with 

inpainted texture

Fig. 8. Divided grids for calculating luminance
changes.

key frame in which the object regions are inpainted.
Because there is usually some difference in the lumi-
nance of the key frame and the current frame, we
adjust the luminance of the key frame’s texture (III-
5) before overlaying this texture on the mask regions
(III-6). In this study, we use a similar approach as in
our previous marker-hiding method [3], whereby we
estimate luminance changes in the mask region from
the changes in the surrounding region using rectified
images between the key frame and the current frame.
We do not directly use the amplitude of luminance
changes in the target object, but instead estimate this
from the surrounding region, because the photometric
properties of the object and the surrounding materials
are different.

The difference from our previous marker-hiding
method [3] is that the luminance change of each
rectified image is calculated separately, because the
degree of luminance change on each plane is thought
to differ according to the plane’s normal direction. In
addition, the number of pixels in the mask regions
varies in each frame because of the projection of the
3D target region. In the following, we describe the
method for calculating the luminance change coeffi-
cients by which pixel values in the rectified images of
the key frame are multiplied when they are overlaid
on the mask regions in the rectified images of the
current frame.

As shown in Fig. 8, we first divide the rectified
images of the key frame with inpainted texture and a
current frame into grids of s × s pixels. For efficient
processing, the grid-wise luminance change coeffi-
cients are calculated before the pixel-wise coefficients
are determined. We then calculate luminance change
coefficients of the grid according to the following two
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conditions.
• The grid does not include the mask region or

areas outside the image in the current frame.
• The adjacent grid includes the mask region in the

current frame.
The luminance change coefficient is calculated by
dividing the sum of pixel values in the grid for the
current frame by that for the key frame. Next, the
coefficients of grids that include the mask region in
the current frame are estimated using the coefficients
calculated for surrounding grids. In this study, we
assume that adjacent grids have small luminance
changes because of ambient illumination changes and
soft shadows caused by users, and therefore the lumi-
nance change coefficient of each grid is calculated so
as to minimize the following cost function E:

E =
∑

(p,q)∈R

(α̂p − α̂q)
2, (3)

where α̂p and α̂q are luminance change coefficients
of grids p and q, and R is the set of pairs of grid
indexes from the eight neighboring grids. It should
be noted that some surrounding grids extend outside
of the image because of camera motion, as shown in
rectified image 2 of the current frame in Fig. 8. In
such cases, the coefficients of the grids including this
outside area are not included in Eq. (3). The luminance
change coefficients that minimize E are analytically
calculated by differentiating E with respect to each
luminance ratio and solving the system of equations.
After calculating the luminance change coefficient
for each grid, the luminance change coefficient α̂p

of grid p is copied to pixel-wise luminance change
coefficient αj of the central pixel j in grid p, and
the pixel-wise luminance change coefficients for the
remaining pixels, excluding the central pixels in the
grids, in the mask region are calculated by bilinear
interpolation. In this process, the coefficients for RGB
are independently calculated and multiplied in order
to deal with chromatic changes.

Finally, the texture of each rectified image of the
key frame is overlaid on the mask region of each
rectified image of the current frame. The rectified
images are transformed to the original appearance of
the current frame using homographies, and these are
then combined to produce the final output (III-6).

4 OPTIONAL UPDATE OF 3D TARGET RE-
GION AND INPAINTED IMAGES

When a target object is distant from the background
objects, the projected mask region is larger, as the
camera position is farther from the key frame position
as shown in Fig. 9. Such a situation reduces the frame
rate because the number of parameters in Eq. (3)
increases.

For such a case, our method provides users an
option to crop a part of the 3D target region with

A subsequent frameKey frame

Fig. 9. Inputs and mask regions varying according to
camera poses.

a user interaction based on the idea of Shape-from-
Silhouette to reduce the projected mask regions. This
process is also accompanied by re-inpainting the key
frame with the additional exemplar textures, which
are newly visible background, and a smaller missing
region, which may yield better results than the first
inpainting.

Specifically, a user first switches the display mode
from showing the target object-less image to showing
a translucent mask, and crop the 3D target region by
drawing a curve as shown in Fig. 10(a). For cropping
the 3D region, our method calculates the intersection
positions of the drawn curve with lines on the image
plane projected from 3D ones connecting the front
polygon and the background plane, and moves the
points on the background plane to 3D positions cor-
responding to the intersections as shown in Fig. 10(b).
Next, the image regions corresponding to the removed
3D region are added to the missing regions in the key
frame images with Poisson blending [25] as shown
in Figs. 10(c) and (d), because the intensities of the
current and key frames may differ. After that, image
inpainting is again applied to the key frame images
that still have missing regions.

5 EXPERIMENTS

We carried out experiments in several environments
using a PC with Windows 7, Core i7-3820QM 2.7 GHz
CPU, 8 GB of memory, and a GeForce GT 650M GPU
for input images of resolution 640 × 480 captured by
a USB camera (Logicool Qcam Pro 9000). We used
the GPU-based function provided by OpenCV 2.4.5
with CUDA support for image rectification in process
(III). We used PTAM [26] for the visual-SLAM and
inpainting methods [17]. We set λ = 1.5 for the rec-
tified image resolution, and set s = 20 for luminance
adjustment by considering the trade-off of quality and
processing time. We set the segmentation threshold as
C = cos(π/6).
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(a) Switching display mode and drawing a curve

(b) Updating 3D target region

(c) Rectified images with missing regions

for first inpainting

(d) Rectified images with missing regions for 

second inpainting after adding visible background

Fig. 10. Cropping of 3D target region and updating of
rectified key frame images.

5.1 Comparison of Proposed and Conventional
Methods

We compare the results given by the proposed method
with those from a conventional approach using a
single homography with respect to the quality of
image inpainting and temporal coherence of textures
for two scenes.

First, we demonstrate the effectiveness of image
rectification and search region limitation in terms of
the quality of image inpainting. Fig. 11 compares the
inpainted results. Figs. 11(f) show the result obtained
by applying the inpainting method [17] to the original
input image in Figs. 11(b). For scene 1, as we can see,
unnatural textures were generated in the target region
due to the perspective distortion and the complexity
of textures. For scene 2, plausible textures were gener-
ated for the garden plants, but slightly blurry texture
were generated on the ground due to the perspective
distortion. On the other hand, as shown in Figs. 11(c)
and (d), the proposed method successfully segmented
the images by finding three and two planes for scenes
1 and 2, respectively, and gave natural textures to the

target regions in the rectified images, which have var-
ious regular and random textures. By combining the
inpainted rectified images, natural textures could be
generated in the target region, as shown in Figs. 11(e).

Next, we consider the temporal coherence of
textures by comparing results using the proposed
method with those from a conventional approach
using a single homography [12], [3] using the same
sequences as Fig. 11. In the conventional approach,
we fitted one plane to the feature points near a
mask region using the least-squares method, and the
inpainted result generated by the proposed method
(Fig. 11(e)) was geometrically transformed using the
plane for each frame. To focus on the temporal co-
herence, we used the same inpainted result. Fig. 12
compares the output. As shown in the bottom images
of Fig. 12, camera motion causes edges to become
disconnected on the boundaries of the target regions
because of different geometries between the target and
surrounding regions. In contrast, as shown in the mid-
dle images of Fig. 12, the temporal coherence of the
inpainted textures is preserved under various camera
movements. Conventional methods [12], [3] have the
limitation that the whole of a target object must
exist in an image for each frame to continue visually
removing the object. However, the proposed method
can successfully overlay natural textures on the mask
region using the extracted planes and camera pose
estimated by visual-SLAM, even if the camera motion
causes the target object to leave the image, as in the
third and sixth column images of Fig. 12.

5.2 Results for Various Scenes

In this section, we report the results of experiments
for additional two scenes under different conditions.
In Figs. 13 and 14, Fig. (a) shows the key frame, with
the top row showing the input image, the middle row
showing the segmented mask region, and the bottom
row showing the inpainted results of rectified images.
Figs. (b) to (e) show subsequent frames captured from
various viewpoints; the top row shows input images,
the middle row shows the mask regions, and the
bottom row shows output images.

First, we discuss the experiment for the scene in
Fig. 13, in which the optical parameter of the camera
automatically changes with camera motion because
of the large difference in luminance between sunny
and shady areas and the low dynamic range of the
camera. In this scene, the mask region of the key frame
is inpainted when the camera’s optical parameter
adjusts to a shady area, as shown in Fig. (a). The
optical parameter is adjusted according to this shady
area in Figs. (b) and (d), and to sunny areas in Figs. (c)
and (e). From the results, we can confirm that the
inpainted textures in the target region are successfully
adjusted by the luminance adjustment of the proposed
method.
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(a)

(d)

(e) (f)

(c)

(b) (a)

(d)

(e) (f)

(b) 

Scene 1 Scene 2

(c)

Fig. 11. Comparison of inpainted results for two scenes: (a) input image, (b) segmented mask region, (c) three
rectified and region-limited images, (d) inpainted results for rectified images, (e) result from the combination of
rectified images, and (f) result of applying the inpainting method to original appearance of input image (b).

Scene 1 Scene 2

Fig. 12. Comparison of results from different viewpoints by the proposed method and the conventional approach
using one homography for two scenes. Top: input images. Middle: results given by the proposed method. Bottom:
results given by the conventional approach.
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Fig. 13. Experiment for a scene with the camera’s optical parameter changed: (a) key frame, (b) to (e)
subsequent frames.
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Fig. 14. Experiment for a scene in which the target object is distant from the background objects: (a) key frame,
(b) to (e) subsequent frames.

Second, we consider the experiment for the scene
in Fig. 14, in which the target object is distant from
the background objects. In this scene, we cropped
the 3D target region because the mask region became
large when the camera position moved from the key
frame position, as shown in Fig. (c). As a result, the
projected mask region reduced as shown in Fig. (d).
Comparing the result before cropping in Fig. (b) with
that in Fig. (e) in which the camera moved back
near to the key frame position after cropping, we can
confirm that the inpainted texture was replaced with
the newly visible background in the large area of the

mask region.

5.3 Parameters and Computational Time

We now study the influence of the number of planes
and parameters on computational time and quality.
First, we discuss the computational time with differ-
ent number of planes using three scenes in which
one, two, and three planes are estimated, as shown in
Fig. 15. Table 1 shows the computational time of each
process, as well as the frame rate for 2,000 frames with
and without GPU after commencing the diminished
reality method. The proposed method implements
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(a) (b) (c)

Fig. 15. Scenes for measuring computational time.
From top to bottom, inputs, rectified images, results
of scenes with (a) one plane, (b) two planes, (c) three
planes.

parallel processing to inpaint rectified images and
adjust the luminance of inpainted textures in the
case of multiple planes. The time taken for image
inpainting is recorded as the time when the inpainting
of all rectified images is complete. For scene analysis,
the computational time for the three cases is small
enough for a user to wait for diminished reality to
start. For inpainting, the computational time mainly
depends on the size of the missing region, rather
than the number of planes. In terms of frame rate,
the GPU effectively speeds up the processing, but
the processing speed decreases as more planes are
estimated because of sequential rectification for each
plane. Since our implementation employed OpenCV
to use the GPU, the frame rate may be improved with
more sophisticated management of multi-core CPU in
conjunction with GPU.

Next, we discuss the influence of the parameters
λ for the resolution of the rectified image and grid
size s × s for luminance adjustment on the quality
of overlaid texture and computational time. In this
experiment, we use the environment in which one
plane is estimated, like in Fig. 15(a). First, we show the
computational time with different λ and s in Table 2.
Because larger λ lowers the resolution of a rectified
image, the inpainting speeds up and the frame rate
is increased with larger λ. Because larger s decreases
the number of parameters in Eq. (3), the frame rate is
increased with larger s. Next, we compare the quality
of overlaid textures with different parameters in terms
of resolution and luminance. First, we discuss the res-
olution with different values of λ in Fig. 16. When the
camera comes close to the target object, we can realize
that the resolution of overlaid texture is insufficient

TABLE 1
Computational time.

Scene

Scene
Analysis

(a-3) to (a-6)

Inpainting
(Max. No. of missing

pixels in rectified images)
(a) 1 plane 30 msec. 3.30 sec. (8091 px)
(b) 2 planes 78 msec. 4.52 sec. (12108 px)
(c) 3 planes 95 msec. 4.42 sec. (9466 px)

Scene
Frame rate
with GPU

Frame rate
without GPU

(a) 1 plane 32.39 fps 27.48 fps
(b) 2 planes 24.80 fps 20.48 fps
(c) 3 planes 21.79 fps 15.48 fps

TABLE 2
Computational time with different parameters.

Parameters
Inpainting

(No. of missing pixels)
Frame rate
with GPU

λ = 1.5 s = 5 2.99 sec (7654 px) 29.94 fps
λ = 3.0 s = 5 1.22 sec. (1905 px) 31.46 fps
λ = 3.0 s = 20 1.87 sec. (1884 px) 32.49 fps

with λ = 3.0, as shown in Fig. 16(b), meaning the
resolution of the rectified image is too low. Second,
Fig. 17 compares the quality of luminance adjust-
ment. In indoor environments, there are often local
luminance changes caused by object occlusion and
near light sources. Especially in such an environment,
the adjustment of luminance of inpainted texture is
insufficient with the large grid size, as shown in the
boundary of the missing region in Fig. 17(b). From
these results, we have to carefully set the parameters
considering the supposed environment in conjunction
with considering the trade-off between the computa-
tional time and the quality.

5.4 Discussion and Limitations

As described in sections 5.1 and 5.2, the proposed
method works well for the various real environments
as shown in Figs. 12, 13 and 14. This means that
the various real scenes can be represented by a small
number of planes and image inpainting is effective
for such scenes. However, the proposed method has
theoretical limitations, which were not demonstrated
in the experiments. This section summarizes and dis-
cusses the limitations of the proposed method.

5.4.1 SLAM
Since we used PTAM [26] as a visual-SLAM method,
the target scenes must have some textures to enable
the extraction of feature points to calculate camera
poses. For plane detection, each plane must have some
textures for extracting a sufficient number of feature
points to fit an appropriate plane. If, for example, a
scene consists of two planes and one of the planes has
few textures, the proposed method may detect only
one plane and not achieve the temporal coherence.
In addition, SLAM methods such as PTAM usually



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

(a) (b)

Fig. 16. Resolution of overlaid texture with different
values of λ: (a) λ = 1.5 (b) λ = 3.0. Top: output. Bottom:
input with a mask.

(b)(a)

Fig. 17. Adjustment of luminance with different values
of s: (a) s = 5 (b) s = 20. Top: output. Bottom: input
with a mask.

require a user a specific start to initialize the camera
pose, which may give some burden for the user.

5.4.2 Background geometry
Since the proposed method assumes that the back-
ground geometry is approximated by multiple planes,
it cannot handle the scenes that do not satisfy the
assumption such as a curved background geometry
and no background objects with which we can see
a horizontal line. For example, for a scene with a
curved background geometry as shown in Fig. 18,
while the background is divided into multiple planes,
despite its curved shape, and the missing region of
each rectified image is plausibly inpainted by the
proposed method, disconnected texture appeared on
the boundary of the mask region when the camera

(a) Key frame (b) Subsequent frame 

Input

Segmented mask region

Inpainted 

rectified images

Mask region

Diminished result

Input

Diminished result

Fig. 18. Example of limitations: for a scene with
a curved background: (a) key frame, (b) subsequent
frame.

moves in a subsequent frame. In addition, it cannot
handle individual but parallel planes because our
clustering of feature points uses only normal vectors
and feature points on such planes are grouped into
the same cluster. In such a case, only a single plane
is fitted to the feature points despite the existence of
multiple planes, and the inappropriate plane fitting
cases texture disconnection according to camera mo-
tion.

5.4.3 Quality of overlaid textures
The quality of overlaid texture in each frame largely
depends on the inpainted result for a key frame.
Therefore, the key frame should include sufficiently
large amount of sample textures with high resolution
and good focus to obtain good results by inpainting.
In addition, the geometry should be correctly esti-
mated to correct perspective distortion and preserve
temporal coherence of textures. However, even if the
requirement is satisfied, the quality of the output
frame is often limited because of the following rea-
sons:

• A part of the mask region is not covered by the
background texture because the partial area is
corresponding to a region outside the rectified
image of the key frame when the camera largely
moves.

• The overlaid image blurs when the camera moves
close to the background object because the reso-
lution of the inpainted result is fixed.

• The overlaid image cannot represent the strong
cast shadows and spotlights when they come on
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the mask region because our method forces the
luminance change coefficients for adjacent grids
to be similar.

• The overlaid textures with high quality may
cause visual inconsistency when the quality of
the captured frame is deteriorated by some noise
such as motion blurs due to camera rapid motion.

5.4.4 Selection of target objects
Drawing a contour around a target object as precisely
as possible is desirable because a small target region
tends to enable the better inpainted result. Suppose
that the proposed method runs on smartphones and
tablet PC, it may be difficult for a user to draw
it precisely. Therefore, we should consider such an
approach as [12] in which the contour around the
target object shrinks down to the boundary of it after
user’s rough selection.

6 CONCLUSION

We have proposed a new diminished reality method
for more general scenes than conventional methods.
By approximating the background geometry using a
combination of local planes, the perspective distortion
of texture is corrected and the search area is limited,
thus improving the quality of image inpainting. The
temporal coherence of texture is also preserved using
the geometries and camera pose estimated by visual-
SLAM. Mask regions are robustly set in each frame
using a 3D region, instead of tracking target objects
in 2D image space, and the 3D region is interactively
cropped and simultaneously inpainted results are up-
dated with the additional visible background.

In the experiments, we compared the results given
by the proposed method with those from a conven-
tional approach using a single homography. This con-
firmed that the proposed method gives more natural
results with comparatively unrestricted camera mo-
tion. In addition, we demonstrated the effectiveness of
the proposed method for various scenes. However, the
proposed method has the limitations that the camera
movement is still restricted by various background
geometries and the management of a key frame, and
the quality of diminished reality largely depends on
the robustness of SLAM.

To address the former problem, we must deal with
additional geometries and extend the key frame using
subsequent frames. As for the robustness of SLAM,
we can employ a different method according to the
scene. For example, in indoor scenes, we could ap-
ply an RGBD camera-based SLAM method, such as
KinectFusion [27], as these robustly estimate back-
ground geometries even for non-textured regions.
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