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Abstract

Human action recognition applications are greatly benefited from the use of commodity depth sensors that are
capable of skeleton tracking. Some of these applications (e.g., customizable gesture interfaces) require learning of
new actions at runtime and may not count with many training instances. This paper presents a human action
recognition method designed for flexibility, which allows taking users’ feedback to improve recognition performance
and to add a new action instance without computationally expensive optimization for training classifiers. Our nearest
neighbor-based action classifier adopts dynamic time warping to handle variability in execution rate. In addition, it
uses the confidence values associated to each tracked joint position to mask erroneous trajectories for robustness
against noise. We evaluate the proposed method with various datasets with different frame rates, actors, and noise.
The experimental results demonstrate its adequacy for learning of actions from depth sequences at runtime. We
achieve an accuracy comparable to the state-of-the-art techniques on the challenging MSR-Action3D dataset.
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1 Introduction
Human action recognition (HAR) attracts the attention of
many researchers due to its numerous applications, such
as video surveillance, human computer interaction, and
video analysis [1]. However, providing a machine the abil-
ity to recognize human actions from an image sequence
is a challenging task due to their large variability in vari-
ous factors [2]. In [3], three main sources of variability are
identified: viewpoint, execution rate/speed, and anthro-
pometry.
The recent commodification of depth sensors provides

a way to reduce the variability using depth information
[4]. They provide 3D structure of scenes, which facilitates
the understanding of human actions under conditions in
which 2D approaches may be ineffective (e.g., motion
perpendicular to the camera plane). Moreover, depth sen-
sors have opened a door for the development of novel
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techniques that have been used in many computer vision-
related research [5, 6]. A distinguished technique, espe-
cially advantageous for HAR, is 3D-articulated skeleton
tracking in real-time such as [7], which allows modeling
human actions in terms of trajectories of body joints. This
method is more reliable than using other visual features
that are tied to the user’s appearance, such as silhou-
ettes. Various techniques have been proposed using depth
sensors [8, 9], and more specifically, human joint mod-
els. They use different types of classifiers such as hidden
Markov models (HMMs) and support vector machines
(SVMs).
Most of these recognition methods rely on an expensive

learning process with a large training dataset for gener-
alization performance. However, some applications may
not count with a large number of instances to be trained
with or may need flexibility in learning and classifying
the user’s behavior (i.e., learning of new actions during
runtime). Examples are configurable gesture interfaces or
customized retrieval in action databases, in which a new
gesture or action can be added to meet the user’s needs.
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With these premises in mind, we propose and evalu-
ate a novel approach focused on flexibility. Our method
is based on the nearest neighbor (NN) approach [10]
and uses the joint trajectories estimated from the depth
sequences, referred to as action templates (ATs), as a
model for each action class. Our method does not require
a computationally expensive learning process; modifica-
tion of the model can be done by just adding new labeled
joint trajectories to the set of ATs. For action classification
of an unknown action sequence, our method calculates
the distance between that sequence and each AT via
dynamic time warping (DTW), which is widely used for
analyzing time series data [11]. The joint trajectories esti-
mated from depth maps are generally noisy, which might
hinder recognition accuracy. For this reason, we include
in our ATs the confidence values of each tracked joint
along with their respective position, and modify the DTW
algorithm to calculate a distance between actions while
avoiding erroneous trajectory sections.
The contributions of this work are summarized as fol-

lows:

• We propose a novel method for flexible HAR that
allows updating the action classifiers at runtime and
classification with few training instances. It is
designed for applications such as customizable
gesture interfaces.

• We also propose a modification of the classification
algorithm to mask noisy joint trajectories by using
the confidence values from the skeleton tracker.

• We evaluate experimentally the performance of our
method and its adequacy for runtime learning of
actions in depth sequences. The results demonstrate
the effectiveness and accuracy of our method along
with its flexibility.

The remainder of this paper is organized as follows.
Section 2 introduces the different state-of-the-art tech-
niques in HAR. Section 3 describes our method. Section 4
details the experimental results, and finally, Section 5
concludes this work.

2 Related work
2.1 HAR in RGB video
Until recently, HAR has been performed exclusively on
videos captured with traditional cameras [12]. Some
methods directly use captured images as spatio-temporal
volumes to represent motion [13–15]. In [16], Calderara
et al. extracted 1D trajectories from 2D images to repre-
sent how an object motion varies in time. However, finer
action recognition requires to segment the human body
and extract the pose information. Once the body model
is obtained from the video, different features related to
the human pose can be extracted. Fujiyoshi et al. [17] and

Chen et al. [18] extract a primitive skeleton for model-
ing human actions, in which the skeleton is simplified for
reducing the computational cost.
However, these methods suffer from some inaccuracies

in the processing of RGB images. According to [19], esti-
mating human poses from 2D video is harsh due to large
variations in appearance. In addition, the segmentation
of human figures in order to estimate the pose in RGB
images is very computationally expensive, due to the high
dimensionality of visual features [20]. In the samemanner,
since the estimation of explicit positions of body parts in a
continuous way is difficult, it is also hard to create a gen-
eral algorithm to learn the model parameters of human
actions. It should be noted that themain limitation of such
2D methods is that poses are captured from a single point
of view [21], and therefore, certain types of actions can be
highly ambiguous.

2.2 HAR in depth video
With the release of commodity depth sensors, HAR
underwent a breakthrough thanks to the application of
additional 3D information [22]. The use of depth maps
alleviates variations in human appearance to a great extent
[23]; they can make human segmentation in video far
easier and almost immune to illumination, camera blur-
ring, and other factors that hinder HAR. Based on these
premises, Li et al. [24] used a depth sensor to obtain a
depth map sequence, which is represented as a bag-of-3D
points in order to model the actions. Although it outper-
formed 2D methods, including other bag-of-words-based
representations such as [25], this method is still view-
dependent because the sampling is performed directly on
the depth maps. Another technique involves applying his-
tograms to the 3D point cloud sequences captured by the
sensor to calculate descriptors that characterize human
shape motion, such as histograms of 4D normals [26] and
principal components [27].
One of the advantages of using depth sensors for HAR is

that it facilitates the estimation of accurate 3D body joint
positions from depth maps via skeleton tracking. These
3D positions can be more direct cues for HAR, providing
robustness against variations in viewpoints. Such 3D body
joint trajectories used to be available only with expensive
equipments such asmotion capture devices (MoCap) [28],
as in [29]. But currently, they are obtainable with com-
modity RGB-D sensors with built-in real-time 3D human
tracking capabilities (e.g., Microsoft Kinect), although the
tracking is not exempt from errors [7]. For example, Xia
et al. [8] proposed to use the body joints provided by
Kinect to perform HAR using HMMs.
Martínez-Zarzuela et al. [30] and Wang et al. [9] use

the discrete Fourier transform to represent the joint tra-
jectories in the frequency domain and then feed them
into a classifier, Fuzzy ARTMAP [31] and support vector
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machines (SVMs) [32], respectively. The discrete Fourier
transform reduces the dimensionality of the joint tra-
jectories by assuming that the most crucial informa-
tion is concentrated in the lower frequency components.
It also reduces noises due to tracking errors, which
is a problem inherent to joint estimation from depth
maps.
Variations in execution rate of human actions have a

negative impact in HAR [33]. Many works have relied
on DTW to gain robustness against these variations.
Müller and Röder [34] used DTW to build semantically
interpretable action models by extracting relational fea-
tures that encode temporal dynamics. These relational
features (e.g.„ the right hand is up or down) exclude
a lot of detail of the action, but retain view-invariant
information about the overall configuration of a pose for
its classification. However, because of the loss of detail,
this method confuses actions when they are too simi-
lar or too short, and the accuracy is very dependent on
the manually designed features. In [35], Wang and Wu
dealt with variations in execution rate by combining an
SVM-based classification algorithm with DTW. Alterna-
tively to DTW, the longest common subsequence (LCSS)
is used in [36] to make their action classifier invariant
to temporal variations. In [37], the authors find a rep-
resentation of the body joint trajectories that is robust
against execution rate variations among subjects. They
consider two HAR schemes, a NN classifier, and an SVM
classifier.

2.3 Flexible HAR applications
There is a range of HAR-based applications that require
learning new actions in runtime. Applications such as cus-
tomizable gesture interfaces [38, 39] and action databases,
either for indexing or retrieval [34, 40], can benefit from
such capability, since they are expected to be able to rec-
ognize a new type of action right after being input. This
kind of applications also does not count with many learn-
ing instances [41]. Hence in this work, we consider the
flexibility of approach by two factors:

• Being able to learn a certain action class at runtime.
• Being able to recognize actions even with a very small

number of training instances.

We consider that a method is capable of runtime learn-
ing if it does not perform any optimization of the classifier
when learning a new action instance. The majority of
the previously mentioned works rely on classifiers with a
costly learning process that cannot be updated at runtime
(e.g., SVM) and therefore are not suitable for applica-
tions that require adaptive modification of the training
model. On the other hand, methods that are capable
of runtime learning (e.g., NN) allow this, but to the

best of our knowledge they have not proved state-of-
the-art accuracy yet. We propose a HAR method that,
while facilitating joint trajectories obtained from depth
map sequences, focuses on achieving flexible recogni-
tion with an accuracy comparable to the state-of-the-art
methods. In addition, in order to gain robustness against
noise, we use the joint estimation confidence value during
classification.

3 Flexible HAR usingmasked joint trajectories
Figure 1 depicts an overview of our method, which
takes a nearest neighbor-based approach to gain flexibil-
ity instead of learning a classifier for each action class. We
first estimate the 3D joint positions using skeleton track-
ing from a series of depth map sequences using, e.g., [42],
and store them with their action labels as instances of a
training dataset. One of the main issues that lead to fail-
ure in HAR is concerned with the estimation errors in the
skeleton tracking, as stated in [9]. Fortunately, the joint
position estimation algorithm provides a confidence value
for each joint tracked in each frame. Our method uses it
for both learning and recognition stages to alleviate the
problem of erroneous skeleton tracking. Then, we prepare
an AT for each given action class, which can be viewed
as a model of a specific action. Each AT consists of a set
of joint trajectories of the action instances belonging to
that class along with the confidence values for each joint
positions.
At the recognition stage our method tracks the joint

trajectories of an unknown action instance in the same
way as the learning process, and retrieves its closest
instance from the ATs in the database. Since different
instances of the same action can be subjected to tem-
poral variations (especially different length and execu-
tion speed), we employ a DTW-based distance measure
for template matching during the nearest neighbor-based
classification.

3.1 Action template learning
To generate an AT, we manually select J = 15 different
joints from the skeleton tracked in an action instance, as
illustrated in Fig. 2. Let p′

fj = (xfj, yfj, zfj)� denote the 3D
position of joint j at frame f. Since these positions are in
the RGB-D sensor’s coordinate system, they can vary from
one action instance to another depending on the position
of the actor relative to the sensor. For reducing this vari-
ability, we transform the joint coordinates so that a certain
joint coincides with the origin to improve the robustness
against viewpoint variations. In this work, we choose the
torso as the origin, thus denoting the transformed joint
position as pfj = p′

fj − p′
f torso.

The joint trajectories of all the instances from a certain
action class are then aggregated to form an AT. Along



Tejero-de-Pablos et al. EURASIP Journal on Image and Video Processing  (2016) 2016:20 Page 4 of 12

SCENE

DATA SET

TEMPLATE MATCHING

DISTANCE
CALCULATION

LEARNING RECOGNITION

ACTION LABEL

ACTION TEMPLATES

3D JOINT POSITION
ESTIMATION

NOISE MASKING

3D JOINT POSITION
ESTIMATION

x-y-z c

RUNTIME
UPDATING

Fig. 1 Overview of our HAR method. The 3D joint positions (x,y,z) along with the confidence value (c) are tracked from the video source to build
action templates for each action class. They are used to match new actions and updated at runtime

Fig. 2 Human body joints used in our method. Numbering and
names correspond to the ones used in the skeleton tracker

with them, the associated confidence values of the tracked
positions offered by the joint estimation algorithm of the
skeleton tracker [42] are also included. Let mi be the
action class label for the joint trajectories of the instance
i in the training dataset (mi = running, for example),
Pi = {pifj|f = 1, . . . , Fi, j = 1, . . . , J} the corresponding
joint trajectories, and Ci = {cifj|f = 1, . . . , Fi, j = 1, . . . , J}
their corresponding confidences, where Fi is the number
of frames for action instance i. The AT for action class
M is then a set of joint trajectories with their respective
confidence values, i.e.,

AM = {(Pi,Ci)|is.t.mi = M}. (1)

The learning process only requires the generation of ATs.

3.2 Action classification
Our recognition process calculates a distance measure to
find in our ATs the action instance that is the nearest
neighbor of the given unknown instance. Due to the vari-
ability in the execution of human actions, naive distance
measures are not applicable. For this reason, we employ
the use of a DTW-based distancemeasure, which does not
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require temporal alignment nor synchronization between
a pair of sequences in different sizes [11].
Let U = {ufj|f = 1, . . . , FU, j = 1, . . . , J} be the joint tra-

jectories of an unknown action instance, with F and J as
the total number of frames of the action and the number
of joints, respectively. Note that length FU of an unknown
action and length Fi of an action instance in anAT are gen-
erally different. The local distance between the positions
of joint j in frame f of U and frame f ′ in Pi is defined as
the Euclidean distance as follows:

e(ufj,pif ′j) = ‖ufj − pif ′j‖2. (2)

Then, using confidence value cfj generated during the
tracking, we apply a mask to the trajectory of each joint j
for each frame f. If this value is smaller than a predefined
threshold τ , we determine that that part of the trajectory is
not useful for classification. Therefore, we assign a binary
weight to each point of a joint trajectory by

wfj =
{
1 if cfj ≥ τ

0 otherwise . (3)

This weighting is applied to the joint positions of both
U and Pi. This means only J ′ out of the J joints are used
for frame f, where J ′ is the number of joints that are not
masked (J ′ ≤ J). Thus, we define the masked distance
between all joint positions uf and pif ′ in frames f and f ′ as

d(uf ,pif ′) = 1
J ′

J∑
j=1

e(ufj,pif ′j)wfjwf ′j. (4)

Using this distance, the DTW-based distance measure
between U and Pi is defined as the minimum sum of
the local distances over a warping path. Namely, letting
tn = (fn, f ′

n) be a pair of frames, f for the unknown action
instance U and f ′ for the one in an AT, and T = {tn|n =
1, . . . ,N} a warping path over which the sum is calculated,
the DTW-based distance D is given by

D(U ,Pi) = min
T

∑
(fn,f ′

n)∈T
d(uf ,pif ′) (5)

subject to t1 = (1, 1) and tN = (FU, Fi)
f1 = 1 ≤ f2 ≤ · · · ≤ fN = FU
f ′
1 = 1 ≤ f ′

2 ≤ · · · ≤ f ′
N = Fi

tn+1 − tn ∈ {(1, 0), (0, 1), (1, 1)}.
(6)

Equation (5) can be minimized by dynamic programming.
Since the nearest neighbor-based approach needs to

compare the distances calculated for action instances of
different length, a normalized version of this distance
is calculated. The normalizing factor in this case is the
length of the warping path T, that is

D′(U ,Pi) = 1
N
D(U ,Pi). (7)

The action class m∗ for the unknown action instance U
is given as the one whose AT includes an action instance
that gives the minimum distance with U, i.e.,

m∗ = mi∗ where i∗ = arg min
i

D′(U ,Pi). (8)

4 Experimental results
In order to evaluate our approach for generic HAR, we
choose datasets containing heterogeneous actions [43]
involving the whole body. More specifically, we used the
CMU MoCap dataset, the MSR-Action3D dataset and
our self-generated dataset, and compared the results with
other state-of-the-art methods. A sample frame of each
one is shown in Fig. 3. No ethical approval was needed for
these experiments, since the individual recording time of
the UGOKI3D dataset was short and there was not risk of
any damage or embarrassment. The person in Fig. 3 also
approved appearing in the figure. Besides, all participants
of the UGOKI3D dataset gave their consent to using the
captured data in these experiments.

4.1 Implementation details
The recognition algorithm was implemented in Matlab,
running in Windows 8 (64 bit), installed in a PC with
an Intel Core i7 processor and 16 GB RAM. In addition,
for the experiments, we used an empirically determined
threshold value τ = 0.1.

Fig. 3 Example image of the datasets used. Left: self-generated, center: CMU MoCap, right: MSR-Action3D
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4.2 Self-generated UGOKI3D dataset
The UGOKI3D dataset was generated using a Microsoft
Kinect v1 for evaluating our previous HARmethod, which
used the discrete Fourier transform and neural networks
[30]. It is comprised of eight heterogeneous actions that
involve all body parts, and with different characteristics:
periodic, aperiodic, static (the location of the user in
the scene does not vary) and non-static. The actions are
performed by nine actors of different gender and appear-
ances: (a) bending, (b) jumping jacks, (c) jumping-forward,
(d) jumping, (e) side-galloping, (f ) walking, (g) waving one
hand, and (h) waving both hands. For the sake of com-
parability, we used the same evaluation scheme, applying
leave-one-out (LOO) cross validation, in which we trained
our model with sequences of eight actors and evaluated
our proposed method with the sequences of the remain-
ing one actor. The accuracy was averaged over all nine
iterations.
The average accuracy rate obtained in this experiment

was 94.44 %, which is higher than the one achieved with
our previous method (93.05 %). The confusion matrix for
all actions is shown in Table 1, whose rows and columns
indicate the ground truth and recognition results, respec-
tively. As it can be observed, the most common clas-
sification errors involved actions that present similar
fast position variations in the lower body, i.e., jumping-
forward and walking. One of the reasons of these inaccu-
racies is the occasional errors in the skeleton tracking.

4.3 CMUMoCap dataset
To show the potential performance of our proposed
method when the skeleton tracking is almost perfect, we
used the motion capture dataset provided by Carnegie
Mellon University, which contains actions captured at 120

Table 1 Confusion matrix for the UGOKI3D dataset

(a) (b) (c) (d) (e) (f) (g) (h)

(a) 100%
(9/9)

(b) 88.89%
(8/9)

11.11%
(1/9)

(c) 88.89%
(8/9)

11.11%
(1/9)

(d) 100%
(9/9)

(e) 100%
(9/9)

(f) 11.11%
(1/9)

11.11%
(1/9)

77.78%
(7/9)

(g) 100%
(9/9)

(h) 100%
(9/9)

fps [28]. This dataset was not generated from sequences
captured with depth sensors, but with a motion capture
technique using markers attached to the human body.
This dataset is composed by multiple actors performing
heterogeneous actions divided in categories such as loco-
motion and sports. However, not all the actors perform
every action, and the number of instances of each action
can vary largely. To be consistent with the experiment in
the previous section, a subset of eight different actions was
selected, with a noticeable emphasis on the lower body,
i.e. (a) running, (b)walking, (c) jumping-forward, (d) jump-
ing, (e) soccer kick, (f ) boxing, (g) jumping jacks, and (h)
hand signs. Also, although the dataset offers joint trajec-
tories in more than 20 body parts, we use its subset that
corresponds to the 15 joints of our UGOKI3D dataset.
In addition, since this skeleton tracking method does not
provide a confidence parameter, we did not use masking
for this experiment (wfj = 1).
Our method was evaluated applying LOO cross val-

idation again, achieving the accuracy of 97.22 %. The
accuracy for each action is summarized in the confusion
matrix of Table 2. Only the jumping jacks action is mis-
classified twice; in one sequence, the actor only performed
half a repetition, and in the other the actor did not move
the arms accordingly to the action. As expected, due to the
accurate joint estimates, the results of this experiments
were highly accurate, regardless of the types of actions.We
also evaluated our previous method [30], resulting in an
inferior accuracy of 91.67 %.

4.4 MSR-Action3D dataset
The MSR-Action3D dataset includes various challeng-
ing actions and has been widely used to evaluate HAR
methods. This dataset contains twenty different static

Table 2 Confusion matrix for the CMU MoCap dataset

(a) (b) (c) (d) (e) (f) (g) (h)

(a) 100%
(9/9)

(b) 100%
(9/9)

(c) 100%
(9/9)

(d) 100%
(9/9)

(e) 100%
(9/9)

(f) 100%
(9/9)

(g) 11.11%
(1/9)

77.78%
(7/9)

11.11%
(1/9)

(h) 100%
(9/9)
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Fig. 4 Noise present in the MSR-3DAction dataset. Left: base position, center and right: noisy samples

actions performed by up to ten actors, and the same actor
did the same action from one to three times. The actions
are (a) high arm wave, (b) horizontal arm wave, (c) ham-
mer, (d) hand catch, (e) forward punch, (f ) high throw, (g)
draw x, (h) draw tick, (i) draw circle, (j) hand clap, (k) two
hand wave, (l) side-boxing, (m) bend, (n) forward kick, (o)
side kick, (p) jogging, (q) tennis swing, (r) tennis serve, (s)
golf swing, and (t) pickup and throw. The dataset was built
using sequences captured with depth sensors at 15 fps. It
provides the 3D position and the tracking confidence of 20
joints per frame, but we kept using 15 joints for our pro-
posed method since we considered the extra five (wrists,
ankles, and center hip) do not add much information to
the model. Although some works highlight that its diffi-
culty resides in the similarity of its actions, in our opinion,
the dataset is challenging due to the noise present in the
skeleton tracking. Figure 4 shows some unrealistic poses
included in the dataset.
We followed the evaluation methodology employed

in previous works [9, 24, 26, 37], and divided the 555
instances into three groups as shown in Table 3. For each
group, we conducted a cross-subject experiment in which
the actions performed by actors 1, 3, 5, 7, and 9 were
used for training and the ones from actors 2, 4, 6, 8, and
10 for testing. The overall recognition accuracy obtained
in the experiment was 84.09 %. The individual accuracy

rates for SS1, SS2, and SS3 are 80 %, 78.57 %, and 93.69
% , respectively. The first two subgroups were more erro-
neous than the third one. These results are shown in detail
in Tables 4, 5, and 6.
Table 7, obtained partially from [9], shows the

generalization performance of ourmethod compared with
other state-of-the-artmethods that were evaluated against
this dataset using the same configuration. The upper part
of the table lists the methods that are capable of run-
time learning (e.g., NN), and the lower part of the table
lists the ones that are not (e.g., SVM). Our method’s
accuracy outperforms the other HAR methods that are

Table 3 Action subdivision of the MSR-Action3D dataset used in
the experiments

Subset 1 (SS1) Subset 2 (SS2) Subset 3 (SS3)

Horizontal arm wave High arm wave High throw

Hammer Hand catch Forward kick

Forward punch Draw x Side kick

High throw Draw tick Jogging

Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve

Tennis serve Forward kick Golf swing

Pickup and throw Side boxing Pickup and throw



Tejero-de-Pablos et al. EURASIP Journal on Image and Video Processing  (2016) 2016:20 Page 8 of 12

Table 4 Confusion matrix for the MSR-Action3D dataset (SS1)

(b) (c) (e) (f) (j) (m) (r) (t)

(b) 50%
(6/12)

8.33%
(1/12)

41.67%
(5/12)

(c) 75%
(9/12)

25%
(3/12)

(e) 100%
(11/11)

(f) 18.18%
(2/11)

9.09%
(1/11)

72.73%
(8/11)

(j) 100%
(15/15)

(m) 46.67%
(7/15)

53.33%
(8/15)

(r) 100%
(15/15)

(t) 7.14%
(1/14)

92.86%
(13/14)

capable of runtime learning by far, and is very close to
the state-of-the-art methods. Compared with the other
two datasets used, the MSR-Action3D has a larger pres-
ence of tracking noise. As Müller and Röder remarked in
[34], when performing HAR with noisy templates, recog-
nizing new actions becomes hard (see Table 5). However,
whenwe apply the confidence value of the skeleton tracker
to avoid using the erroneous sections in the AT, match-
ing the recognition performance of our method improves
noticeably, as shown in Table 7.

4.5 Flexible HAR
We evaluate the performance of our proposed method’s
capability of learning new action instances in runtime.We
assume a scenario of a customizable gesture interface for

Table 5 Confusion matrix for the MSR-Action3D dataset (SS2)

(a) (d) (g) (h) (i) (k) (l) (n)

(a) 83.33%
(10/12)

8.33%
(1/12)

8.33%
(1/12)

(d) 50%
(6/12)

16.67%
(2/12)

16.67%
(2/12)

16.67 %
(2/12)

(g) 92.31%
(12/13)

7.69%
(1/13)

(h) 20%
(3/15)

80%
(12/15)

(i) 26.67%
(4/15)

13.33%
(2/15)

60%
(9/15)

(k) 100%
(15/15)

(l) 6.66%
(1/15)

86.68%
(13/15)

6.66%
(1/15)

(n) 100%
(15/15)

Table 6 Confusion matrix for MSR-Action3D dataset (SS3)

(f) (n) (o) (p) (q) (r) (s) (t)

(f) 81.82%
(9/11)

18.18%
(2/11)

(n) 100%
(15/15)

(o) 90.91%
(10/11)

9.09%
(1/11)

(p) 100%
(15/15)

(q) 100%
(15/15)

(r) 100%
(15/15)

(s) 100%
(15/15)

(t) 28.57%
(4/14)

71.43%
(10/14)

a certain application system, in which a command for the
system is issued via the gesture interface whose backend is
our HARmethod. This scenario supposes that the gesture
interface has a predefined set of gestures, each of which
has a single instance of the corresponding gesture when
initialized. The interface learns at runtime; if the interface
fails in correctly recognizing an input instance of a ges-
ture, the user specifies the correct label of the instance and
the interface includes it to the corresponding AT.
To demonstrate the performance under this scenario,

we used the action classes contained in each subset of the
MSR-Action3D dataset instead of actual gestures (eight
different action classes per subset). We used 20 action

Table 7 Recognition accuracy comparison for the MSR-Action3D
dataset

Method Accuracy Type

Proposed method 84.09 % Skeleton

Proposed method (no noise masking) 79.31 % Skeleton

Rate-invariant analysis (NN) [37] 63 % Skeleton

Dynamic temporal warping [34] 54 % Skeleton

MMTW [35] 92.57 % Skeleton

Joint movement similarities [36] 91.2 % Skeleton

HOPC [27] 90.9 % Depth

Rate-invariant analysis (SVM) [37] 89 % Skeleton

HON4D [26] 88.36 % Depth

Mining actionlet ensemble [9] 88.2 % Skeleton

Histograms of 3D joints [8] 78.97 % Skeleton

Action graph on bag-of-3D points [24] 74.7 % Depth

Hidden Markov model [29] 63 % Skeleton

Recurrent neural network [46] 42.5 % Skeleton
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instances of each action class in the subset, and divided
it into two groups: ten for learning and ten for testing.
That is, for each subset we use a learning and testing
groups of 80 action instances each. At the start, we gen-
erate the ATs with a single instance for each class, and
thenwe feed the remaining instances in the learning group
one by one (72 instances in total). If our HAR method
fails to recognize one instance, it adds that instance to
the corresponding AT. We evaluated the accuracy of the
method using the test set after an instance in the learn-
ing group is input. We repeat this 100 times, randomizing
the instances in the learning and testing groups, and the
order of the input learning instances. The recognition
accuracy is the average of all repetitions. We also mea-
sured the time required for recognizing the instances
in the test set, which is also averaged over the 100
repetitions.
Figure 5 shows the runtime accuracy of our method

for each instance in the learning group evaluated against
the test group. The final recognition accuracies achieved
for subsets SS1, SS2, and SS3 are 75.12, 79.06, and 88
%, respectively, with 37, 35, and 27 instances on average
added to the ATs, respectively (see Fig. 6). By compar-
ing these results to the previous experiment, it can be
noticed that our method is able to provide a similar accu-
racy generating ATs in runtime with less than half the
action instances than the previous configuration. It is also
remarkable the fact that our method achieves accuracies
around 50 % with just a single instance per action class.
Figure 7 shows the time in seconds spent in classifying

one gesture using our implementation. It grows from 0.5
to about 2 s almost linearly as the number of learned
instances in our ATs grows.

4.6 Discussion
Our experimental results have shown that our approach
can be successfully applied for HAR at runtime in depth
video sequences. In comparison with many related works,
we use raw 3D joint trajectories instead of other rep-
resentations [9, 30, 34] such as Fourier transform, joint
mining, or boolean features, thereby reducing the com-
putational cost of learning. By applying DTW, we gain
robustness against variations in execution rates, which
heavily affect HAR. Although this methodology is more
sensitive to the noise present in the joint position esti-
mation, we manage to effectively alleviate this problem
by using the confidence values provided by the skeleton
tracker itself. We achieved high recognition rates for a
wide variety of actions (periodic, static, etc.) and sen-
sors (high frame rate, low frame rate), and outperformed
other methods that are capable of runtime learning on the
challenging MSR-Action3D dataset.
Compared to the state-of-the-art methods that are not

capable of runtime learning, our performance is slightly
inferior. We consider the reason is that we do not rely
on an intricate training phase in order to reduce the cost
of learning a new action instance. Besides, our feature
set consists of a small number of joint positions tracked
in real-time, with no other RGB/depth information. Basi-
cally, our method deals with a trade-off between flexibility
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Fig. 5 Recognition accuracy during runtime learning. Horizontal axis: input instances, vertical axis: average recognition accuracy (percentage)
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Fig. 6 Total number of instances in the ATs during runtime learning. Horizontal axis: input instances, vertical axis: average number of instances in the
ATs

and accuracy in order to allow for runtime learning. For
example, Wang and Wu [35] also deal with variations in
execution rate of actions using a human joint model. But
contrary to our proposed method, their maximum mar-
gin temporal warping (MMTW) method relies on a costly
SVM algorithm in order to extract the optimal template
for the training dataset. Therefore, it can be considered

that MMTW is not suitable for runtime learning of new
action instances. Also, in their skeleton approach, they use
1140 (20× 19× 3) features per frame which is the distance
in the three-dimensional space of each body joint offered
by Kinect to the rest. In order to maintain the computa-
tional efficiency, ourmethod uses only 45 (15× 3) features
per frame. The same can be said for other works [9, 36, 37].
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Fig. 7 Classification time for one instance during runtime learning. Horizontal axis: input instances, vertical axis: average classification time (seconds)
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Besides, we have proved experimentally that our
method offers a great flexibility that would allow users to
provide some feedback on wrong classifications or even
to add a new action category at runtime. Also, an AT can
contain instances for several ways of performing the same
action class (e.g., drinking with your left hand or right
hand, gesturing standing up or sitting, etc.), which pro-
vides robustness against variations in the way actions are
executed. Another example of its flexibility is that, in case
of performing action recognition of a specific body part,
the number of trajectories used can be easily modified,
generating customized ATs with just the joints of interest
(hands, legs, etc.). Also, the joint positions contained in
an AT itself can be used to reproduce the captured action,
which is useful for animation purposes.
This work also shows an effective way for applying

DTW to action recognition. To the best of our knowl-
edge, the previous results of using exclusively DTW in a
3D joint-based HAR method have not been convincing
enough [44]. Although intuitively DTW fits quite well a
task such as analyzing action trajectories, it has been crit-
icized arguing that it is more sensitive to temporal scale
changes than HMM-based methods [29], and produces
large temporal misalignments in case of periodic actions
[9]. But rather than that, by looking at the actions used
in the experiments and the results obtained, we inferred
that what most affects this technique was the noise in the
skeleton tracking process.
When the number of instances in our ATs increases, the

time cost of our method in order to classify one action
can be high (Fig. 7) due to the computational cost of
DTW, O(MN), whereM and N are the lengths of the two
compared sequences [45]. However, implementing a real-
time system would not be infeasible due to the increasing
speed of computers and acceleration techniques based on
parallel execution such as GPGPU, given the fact that in
our algorithm distance calculations can be executed com-
pletely in parallel. Our method has also the advantage of
not requiring a large number of action instances.

5 Conclusions
In this paper, we have presented a flexible method for rec-
ognizing actions from trajectories estimated from depth
sequences based on the generation of action templates
using joint trajectories. To deal with inaccuracies in the
joint position estimation, our method integrates a mask
for the noisy sections of the trajectories during clas-
sification using the confidence values offered by the
3D joint position estimation algorithm [42]. The pro-
posed method deals with a trade-off between flexibil-
ity and accuracy, achieving comparable results with the
state-of-the-art methods in a challenging dataset. We
have also successfully demonstrated the flexibility of our
approach, which allows performing HAR with very few

training instances, while learning new actions at runtime.
This is a very powerful feature in applications such as
action databases, video analysis, and customizable gesture
interfaces.
For future work, we plan to optimize the generation

of action templates by eliminating redundant informa-
tion (i.e., clustering similar instances or forgetting unused
instances), and therefore reducing classification times.We
will also address the recognition of action classes that only
differ in their speed (e.g., touching and punching). We aim
to evaluate in depth the flexibility of our approach in a spe-
cific application such as the aforementioned, using video
streams from depth cameras.

6 Consent
All the participants of the self-generated UGOKI3D
dataset gave their consent to using this dataset for the
experiments published in this paper.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ATdP designed the core methodology of the study and carried out the
implementation and experiments. YN participated in the design of the human
action recognition methodology and helped to draft the manuscript. NY
participated in the design of the online learning experiment and helped to
draft the manuscript. FJDP designed the experiments with the UGOKI3D
dataset and participated in the coordination of the study. MMZ conceived of
the study and participated in the creation of the UGOKI3D dataset. All authors
read and approved the final manuscript.

Acknowledgements
This work is partly supported by a Microsoft Research CORE Grant and JSPS
KAKENHI No. 16K16086.

Author details
1Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma city, Nara,
630-0192, Japan. 2University of Valladolid, Campus Miguel Delibes, Paseo
Belén 15, Valladolid, 47011, Spain.

Received: 10 August 2015 Accepted: 20 April 2016

References
1. P Turaga, R Chellappa, VS Subrahmanian, O Udrea, Machine recognition

of human activities: a survey. IEEE Trans. Circuits Syst. Video Technol.
18(11), 1473–1488 (2008)

2. J Aggarwal, MS Ryoo, Human activity analysis: a review. ACM Comput.
Surv. 43(3), 16–11643 (2011)

3. Y Sheikh, M Sheikh, M Shah, in Proc. the 10th IEEE International Conference
on Computer Vision (ICCV). Exploring the space of a human action, vol. 1,
(2005), pp. 144–149

4. C Plagemann, V Ganapathi, D Koller, S Thrun, in Proc. the IEEE International
Conference on Robotics and Automation (ICRA). Real-time identification
and localization of body parts from depth images, (2010), pp. 3108–3113

5. J Giles, Inside the race to hack the kinect. New Scientist. 208(2789), 22–23
(2010)

6. EA Suma, B Lange, A Rizzo, DM Krum, M Bolas, in Proc. the IEEE Virtual
Reality Conference (VR). FAAST: The flexible action and articulated skeleton
toolkit, (2011), pp. 247–248

7. J Shotton, T Sharp, A Kipman, A Fitzgibbon, M Finocchio, A Blake, M Cook,
R Moore, Real-time human pose recognition in parts from single depth
images. Commun. ACM. 56(1), 116–124 (2013)



Tejero-de-Pablos et al. EURASIP Journal on Image and Video Processing  (2016) 2016:20 Page 12 of 12

8. L Xia, C-C Chen, J Aggarwal, in Proc. the IEEE Computer Society Conference
on Computer Vision and Pattern RecognitionWorkshops (CVPRW). View
invariant human action recognition using histograms of 3d joints, (2012),
pp. 20–27

9. J Wang, Z Liu, Y Wu, J Yuan, in Proc. the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR). Mining actionlet
ensemble for action recognition with depth cameras, (2012),
pp. 1290–1297

10. S Cost, S Salzberg, A weighted nearest neighbor algorithm for learning
with symbolic features. Mach. Learn. 10(1), 57–78 (1993)

11. L Rabiner, B-H Juang, Fundamentals of speech recognition (1993)
12. PVK Borges, N Conci, A Cavallaro, Video-based human behavior

understanding: a survey. IEEE Trans. Circuits Syst. Video Technol. 23(11),
1993–2008 (2013)

13. E Shechtman, M Irani, in Proc. the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR). Space-time behavior
based correlation, vol. 1, (2005), pp. 405–412

14. D-Y Chen, S-W Shih, H-Y Liao, in Proc. the IEEE International Conference on
Multimedia and Expo. Human action recognition using 2-D
spatio-temporal templates, (2007), pp. 667–670

15. H Meng, N Pears, C Bailey, in Proc. the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR). A human action
recognition system for embedded computer vision application, (2007),
pp. 1–6

16. S Calderara, R Cucchiara, A Prati, in Proc. the 5th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS). Action
signature: A novel holistic representation for action recognition, (2008),
pp. 121–128

17. H Fujiyoshi, AJ Lipton, T Kanade, Real-time human motion analysis by
image skeletonization. IEICE Trans. Inform. Syst. 87(1), 113–120 (2004)

18. H-S Chen, H-T Chen, Y-W Chen, S-Y Lee, in Proc. the 4th ACM International
Workshop on Video Surveillance and Sensor Networks. Human action
recognition using star skeleton, (2006), pp. 171–178

19. H Ning, W Xu, Y Gong, T Huang, in Computer Vision–ECCV 2008. Latent
pose estimator for continuous action recognition, (2008), pp. 419–433

20. L Zhu, Y Chen, Y Lu, C Lin, A Yuille, in Proc. the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR). Max margin
and/or graph learning for parsing the human body, (2008), pp. 1–8

21. M Raptis, D Kirovski, H Hoppe, in Proc. the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Real-time classification of dance
gestures from skeleton animation, (2011), pp. 147–156

22. J Aggarwal, L Xia, Human activity recognition from 3D data: a review.
Pattern Recognit. Lett. 48, 70–80 (2014)

23. K Biswas, SK Basu, in Proc. the 5th IEEE International Conference on
Automation, Robotics and Applications (ICARA). Gesture recognition using
Microsoft Kinect, (2011), pp. 100–103

24. W Li, Z Zhang, Z Liu, in Proc. the IEEE Computer Society Conference on
Computer Vision and Pattern RecognitionWorkshops (CVPRW). Action
recognition based on a bag of 3D points, (2010), pp. 9–14

25. P Dollár, V Rabaud, G Cottrell, S Belongie, in Proc. the 2nd Joint IEEE
International Workshop on Visual Surveillance and Performance Evaluation
of Tracking and Surveillance. Behavior recognition via sparse
spatio-temporal features, (2005), pp. 65–72

26. O Oreifej, Z Liu, in Proc. the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR). HON4D: Histogram of oriented 4D
normals for activity recognition from depth sequences, (2013),
pp. 716–723

27. H Rahmani, A Mahmood, DQ Huynh, A Mian, in Proc. the European
Conference on Computer Vision (ECCV). HOPC: Histogram of oriented
principal components of 3D pointclouds for action recognition, (2014),
pp. 742–757

28. CMU CMU, CMU Graphics Lab Motion Capture Database (2015).
http://mocap.cs.cmu.edu/. Accessed 1 June 2016

29. F Lv, R Nevatia, in Computer Vision–ECCV. Recognition and segmentation
of 3-D human action using HMM and multi-class Adaboost, (2006),
pp. 359–372

30. M Martínez-Zarzuela, F Díaz-Pernas, A Tejeros-de-Pablos, D
González-Ortega, M Antón-Rodríguez, Action recognition system based
on human body tracking with depth images. Adv. Comput. Sci. Int. J. 3(1),
115–123 (2014)

31. GA Carpenter, S Grossberg, N Markuzon, JH Reynolds, DB Rosen, Fuzzy
ARTMAP: a neural network architecture for incremental supervised
learning of analog multidimensional maps. IEEE Trans. Neural Netw. 3(5),
698–713 (1992)

32. JA Suykens, J Vandewalle, Least squares support vector machine
classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

33. A Veeraraghavan, A Srivastava, AK Roy-Chowdhury, R Chellappa,
Rate-invariant recognition of humans and their activities. IEEE Trans.
Image Process. 18(6), 1326–1339 (2009)

34. M Müller, T Röder, in Proc. the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. Motion templates for automatic classification and
retrieval of motion capture data, (2006), pp. 137–146

35. J Wang, Y Wu, in Proc. the IEEE International Conference on Computer Vision
(ICCV). Learning maximummargin temporal warping for action
recognition, (2013), pp. 2688–2695

36. H Pazhoumand-Dar, C-P Lam, M Masek, Joint movement similarities for
robust 3D action recognition using skeletal data. J. Visual Commun.
Image Represent. 30, 10–21 (2015)

37. B Amor, J Su, A Srivastava, Action recognition using rate-invariant analysis
of skeletal shape trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 38(1),
1–13 (2016)

38. J Liu, L Zhong, J Wickramasuriya, V Vasudevan, uWave:
Accelerometer-based personalized gesture recognition and its
applications. Pervasive Mobile Comput. 5(6), 657–675 (2009)

39. P Mistry, P Maes, L Chang, in Proc. the CHI Extended Abstracts on Human
Factors in Computing Systems. WUW-wear Ur world: a wearable gestural
interface, (2009), pp. 4111–4116

40. M Müller, A Baak, S Hans-Peter, in Proc. the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. Efficient and robust annotation of
motion capture data, (2009), pp. 17–26

41. Z Prekopcsák, P Halácsy, C Gáspár-Papanek, in Proc. the 10th ACM
International Conference on Human Computer Interaction with Mobile
Devices and Services. Design and development of an everyday hand
gesture interface, (2008), pp. 479–480

42. Z Zhang, Microsoft Kinect sensor and its effect. MultiMedia, IEEE. 19(2),
4–10 (2012)

43. JM Chaquet, EJ Carmona, A Fernández-Caballero, A survey of video
datasets for human action and activity recognition. Comput. Vis. Image
Understand. 117(6), 633–659 (2013)

44. S Sempena, NU Maulidevi, PR Aryan, in Proc. the IEEE International
Conference on Electrical Engineering and Informatics (ICEEI). Human action
recognition using dynamic time warping, (2011), pp. 1–5

45. G Al-Naymat, S Chawla, J Taheri, in Proc. the 8th Australasian DataMining
Conference-Volume 101. SparseDTW: a novel approach to speed up
dynamic time warping, (2009), pp. 117–127

46. J Martens, I Sutskever, in Proc. the 28th International Conference onMachine
Learning (ICML). Learning recurrent neural networks with Hessian-free
optimization, (2011), pp. 1033–1040

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http:// mocap.cs.cmu.edu/

	Abstract
	Keywords

	Introduction
	Related work
	HAR in RGB video
	HAR in depth video
	Flexible HAR applications

	Flexible HAR using masked joint trajectories
	Action template learning
	Action classification

	Experimental results
	Implementation details
	Self-generated UGOKI3D dataset
	CMU MoCap dataset
	MSR-Action3D dataset
	Flexible HAR
	Discussion

	Conclusions
	Consent
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

