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PAPER

Privacy Protection for Social Video via Background Estimation and
CRF-Based Videographer’s Intention Modeling

Yuta NAKASHIMA†a), Member, Noboru BABAGUCHI††, Fellow, and Jianping FAN†††, Nonmember

SUMMARY The recent popularization of social network services
(SNSs), such as YouTube, Dailymotion, and Facebook, enables people to
easily publish their personal videos taken with mobile cameras. However,
at the same time, such popularity has raised a new problem: video privacy.
In such social videos, the privacy of people, i.e., their appearances, must be
protected, but naively obscuring all people might spoil the video content.
To address this problem, we focus on videographers’ capture intentions.
In a social video, some persons are usually essential for the video content.
They are intentionally captured by the videographers, called intentionally
captured persons (ICPs), and the others are accidentally framed-in (non-
ICPs). Videos containing the appearances of the non-ICPs might violate
their privacy. In this paper, we developed a system called BEPS, which
adopts a novel conditional random field (CRF)-based method for ICP de-
tection, as well as a novel approach to obscure non-ICPs and preserve ICPs
using background estimation. BEPS reduces the burden of manually ob-
scuring the appearances of the non-ICPs before uploading the video to
SNSs. Compared with conventional systems, the following are the main
advantages of BEPS: (i) it maintains the video content, and (ii) it is immune
to the failure of person detection; false positives in person detection do not
violate privacy. Our experimental results successfully validated these two
advantages.
key words: intentionally captured person, conditional random field, back-
ground estimation, privacy protection, social video

1. Introduction

Recently, many personal videos taken with mobile cameras
are being uploaded on such social network services (SNSs)
as YouTube and Facebook, where they are widely navigated
and viewed. Generally, such social videos contain the ap-
pearances of persons, which are crucial privacy sensitive in-
formation. Since disclosing such privacy sensitive informa-
tion may seriously violate the privacy rights of others, sys-
tems are required that obscure the appearances of persons.

Many systems for video privacy protection have been
proposed for applications with specific tasks, such as video
surveillance [1]–[4], Google Street View [5], [6], and life-
logging [7]. These systems basically detect all or a predeter-
mined set of persons and obscure them using such appear-
ance obscuration methods as blurring and blocking out. The
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fundamental idea underlying these systems is that whether
the persons captured in the videos are shown to viewers is
solely determined based on whether they grant permission.
Some systems strictly adhere to this idea and allow the indi-
viduals to choose whether to be shown [4], [8], [9], but this
requires special infrastructure to identify persons.

Systems solely based on such an idea can suffice for
various tasks, but they are not suitable for protecting privacy
in social videos for two reasons: (i) Social videos are usually
taken by videographers who have a strong intention for cap-
turing the videos, e.g., recording a child’s play or a friend’s
wedding. Such intentions determine persons who are essen-
tial for the videos, and videographers intentionally capture
them. We call them intentionally captured persons (ICPs).
Obscuring all or a predetermined set of persons without con-
sidering the ICPs significantly spoils the video content. (ii)
In social videos, visual quality is an essential factor for en-
hancing the viewers’ experience; how persons are obscured
is thus crucial for privacy protection.

Considering these differences, we summarize the re-
quirements for a privacy protection system for social videos,
besides completely obscuring the appearances of persons
without permission, as follows:

1. It must present ICPs in privacy protected videos.
2. It must provide various methods for obscuring the ap-

pearances of persons.

Requirement 1) confirms that privacy protected videos
retain the content of their original. This requirement
might cause conflict between videographer intentions and
ICPs’ privacy because ICPs are determined solely based on
videographer intentions but the fundamental idea underlying
privacy protection systems does not allow this. Automati-
cally resolving it is impossible without negotiation between
the videographer and the ICPs. Even if the conflict is re-
solved, we still need a technique to locate ICPs or non-ICPs
in the videos for automatic privacy protection. Requirement
2) allows the users to choose a suitable appearance obscura-
tion method to maintain the visual quality. This requirement
is demanding because flexible obscuration in, e.g. [4], re-
quires background images, which are usually not available
for videos taken by mobile cameras.

In our previous work [10], [11], we developed a sys-
tem that fulfills requirement 1) by selectively obscuring
non-ICPs under the assumption that no conflict exists be-
tween videographer intentions and the ICPs’ privacy. For
selective obscuration, our previous system adopts non-ICP
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detection [12] that detects all of the persons and classifies
them into ICPs or non-ICPs to obscure only the latter group
(Fig. 1 (a)). Unfortunately, this system still suffers from a
limited number of obscuration methods; it can only pro-
vide blocking out, blurring, and seam carving, all of which
can be applied without using background images. In addi-
tion, experimental results revealed the difficulty in detect-
ing non-ICPs because they are not essential for the video,
and videographers do not pay much attention to them. This
results in too small or partially captured non-ICPs. In our
previous system, such detection failure directly leads to the
disclosure of appearances, making it inadequate for video
privacy protection.

In this paper, we propose a system for social video
privacy protection, called BEPS (Background Estimation-
based Privacy protection system for Social videos), which
is an extension of our previous system [13]. BEPS takes a
novel approach for video privacy protection that estimates
the background image of each frame, finds ICPs to be pre-
sented, and superimposes them onto the background image
to maintain the video content (Fig. 1 (b)). Superimposition
of ICPs enables BEPS to present them for requirement 1),
and background estimation offers various obscuration meth-

Fig. 1 Differences between (a) our previous system [10], [11] and (b)
BEPS in their approaches to privacy protection.

Fig. 2 Some Example of appearance obscuration. From left to right: original, see-through, dot, edge,
and avatar, some of which are from [4].

ods, as in Fig. 2, for requirement 2). BEPS also overcomes
the problem of sensitivity to detection failure in our previ-
ous system. Background estimation generates background
images that contain no person; therefore, explicit detection
of non-ICPs is no longer necessary. This makes BEPS’s
privacy protection capability immune to non-ICP detection
failure.

The following are our contributions:

• We develop a novel system for social video privacy
protection called BEPS assuming that the conflict be-
tween the videographer and the ICPs is resolved by ne-
gotiation. By using ICP detection and background es-
timation, BEPS automatically generates a privacy pro-
tected video without any additional burden on videog-
raphers. This is a new research direction toward video
privacy protection.

• We introduce new preprocessing and frame selection
stages for background estimation to make BEPS appli-
cable to longer videos than our previous system [13].
Our experimental results demonstrate that these stages
actually achieve this without sacrificing BEPS’s perfor-
mance.

• We propose a new ICP detection method using the con-
ditional random field (CRF). Compared to our previ-
ous method [10], [12], our CRF-based model encodes
the spatial relationship among the persons. Our exper-
imental results indicate performance gain over the pre-
vious methods.

The rest of this paper is organized as follows: The
next section introduces related work. Section 3 presents an
overview of BEPS and justifies the assumption that no con-
flict exists between videographer intentions and the privacy
of ICPs. The details of the methods used in BEPS are de-
scribed in Sects. 4–6. In Sect. 7, our experimental results are
illustrated. Section 8 gives discussion, and we conclude this
paper in Sect. 9.

2. Related Work

Video privacy protection has been extensively studied for
fixed camera applications, especially for video surveillance.
Tansuriyavong and Hanaki [1] silhouetted persons, whose
names were displayed based on a face recognition tech-
nique. Chen et al.’s system [2] obscures a person’s appear-
ance while preserving his/her shape and motion for surveil-
lance purposes. Dufaux and Ebrahimi [3] provided scram-
bled video for unauthorized viewers, but for authorized
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viewers, the original video was restored from the scram-
bled one. Chinomi et al.’s system [4], called PriSurv, adap-
tively applies various appearance obscuration, such as blur-
ring, blocking out, and complete removal, based on the re-
lationship between the person and the viewer. Mitsugami
et al. [14] proposed to replace persons to icons, which may
not cover the persons’ entire silhouette. For this, they syn-
thesized a background image for a fixed camera and super-
imposed the icons on it. To handle different lighting condi-
tions, their background images are synthesized from long-
term observation of the environment.

The privacy issue of Google Street View has also been
addressed [5], [6]. Frome et al. [5] proposed a technique to
increase the recall rate of face detection to avoid disclosing
faces. Flores and Belongie [6] replaced persons with corre-
sponding regions in other Google Street View images cap-
tured at different positions.

For videos taken with mobile cameras, Kitahara et al.
proposed a system called Stealth Vision [15], which applies
pixelization to persons. To locate persons in a mobile cam-
era’s frame, their system uses fixed cameras installed in the
target environment. Brassil’s system [8] obscures individ-
uals with a special device for locating them, and he argued
that his system was applicable to mobile cameras. It projects
the person’s position in the target environment onto the view
of a camera. Chaudhari et al. [7] blocked out faces in videos
by a wearable life-log system. YouTube obscures persons in
uploaded videos based on person detection [16].

Another interesting direction for video privacy pro-
tection research is knowledge discovery while preserving
privacy. Fan et al. [17] and Peng et al. [18] developed
methods for statistical inference from video collections dis-
tributed among multiple parties without disclosing the orig-
inal videos to the other parties.

Privacy protection systems offer various types of pri-
vacy obscuration for fixed cameras, e.g., blurring, showing a
dot at the person’s position, or even complete removal [19],
because the background images are available. For mobile
cameras, however, the difficulty in obtaining the background
prevents privacy protection systems from using such obscu-
ration as complete removal. Thus, BEPS adopts background
estimation for mobile cameras to gain more flexibility.

In addition, most existing systems for video privacy
protection preliminarily determine those to be obscured.
Some obscure all persons (e.g. [5]–[7]), and others use a
database and such devices as RFID readers and tags for
identification (e.g. [4], [8], [15]); this approach completely
ignores videographer intentions. Using such devices makes
these systems impractical, and ignoring intentions can de-
tract from the video content (Fig. 3). In contrast, BEPS uses
ICP detection [12] for determining the individuals to be pre-
sented, which makes BEPS practical and suitable for social
videos.

The existing systems for video privacy protection de-
tect persons to be obscured and apply appearance obscu-
ration methods. With this approach, the detection failure
immediately discloses their appearances. By defining a cri-

Fig. 3 Examples of original frame (left) and blocked out video frames
without considering videographer’s intention (right).

terion to measure privacy loss in videos, Saini et al. experi-
mentally demonstrated that obscuring persons based on their
detection is not reliable due to detection failure [20]. There-
fore, research has addressed the reduction of detection fail-
ure [5]. Since BEPS takes a very different approach that su-
perimposes those to be presented on estimated background
images, the generated privacy protected videos are immune
to detection failure. In other words, BEPS can be viewed as
a system that makes a privacy protected background image
of the entire video frame regardless of the persons’ presence
and selectively reveals the ICPs by superimposing them on
the estimated background. This approach basically shares
the same idea as the conclusion of [20], where global obscu-
ration is preferable to obscuration based on person detection
in terms of privacy loss.

BEPS can be deemed an extension of our previous sys-
tem [10], [11], as it provides various privacy obscuration
(Fig. 2) as well as complete removal. BEPS is also an exten-
sion of the system [13]. To improve ICP detection accuracy,
we developed an ICP model, which leverages ICPs’ tempo-
ral and spatial relationship using the CRF. This new model
is similar to one in previous work [21] for real-time appli-
cations, but we introduce richer features and a model at the
cost of computational complexity to improve the accuracy.
In addition, the system [13] is not applicable to long video
because of its severe memory consumption during back-
ground estimation. Our preprocessing and frame selection
stages relax this problem by reducing the number of frames
used in background estimation.

Another extension of the system [10], [11] is real-time
privacy protection [22], which is crucial for live streaming
from mobile cameras. To achieve real-time processing, it is
constrained from various aspects, including applicable fea-
tures for distinguishing ICPs from non-ICPs and privacy ob-
scuration methods. In contrast, since BEPS’s target is videos
to be uploaded to SNSs, the real-time requirement is not im-
posed on BEPS.

3. System Overview

Most existing systems for video privacy protection (e.g.,
[4], [8]) obscure all persons in a video or provide each per-
son in it an opportunity to consent to be presented in the pri-
vacy protected video based on the fundamental idea for pri-
vacy protection mentioned in Sect. 1. This idea potentially
conflicts with videographer intention. However, especially
regarding videos uploaded to SNSs, we make the following
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observations:

• In most cases, ICPs are the videographer’s friends or
family. For them, the videographer can easily obtain
permission to capture and upload the video.

• Since non-ICPs are generally passers-by, obtaining
their permission is practically impossible.

This means the potential conflict between videographer in-
tention and the fundamental idea for privacy protection can
be resolved easily by negotiation between videographers
and ICPs, where there is no conflict between videographers
and non-ICPs because non-ICPs are obscured. BEPS gen-
erates privacy protected videos based on ICP detection, as-
suming no conflict.

Thus, BEPS is not designed to be a fully automatic sys-
tem that strictly follows the idea behind privacy protection.
Rather, it is a tool for supporting videographers, who are
compliant to that idea, by automatically generating privacy
protected videos. The following shows the flow that videog-
raphers go through to upload their video: (i) Obtain permis-
sion to upload it to SNSs from the ICPs who appear in it.
(ii) Obscure all non-ICPs (i.e., people irrelevant to the video
content) using BEPS so that they can upload the video with-
out permission from the non-ICPs. (iii) Upload the video
only when all ICPs in the video allow them to do so.

Figure 4 shows an overview of BEPS. First, BEPS es-
timates the background of frames in an input video using
the method [23]. Since it is designed for a small number
of images and computationally expensive, we perform pre-
processing and frame selection stages to extract the frames
suitable for background estimation. For each frame in the
input video, we synthesize its background image from the
estimated background for selected frames. After detecting
the ICPs, BEPS extracts the ICPs using the graph cuts al-
gorithm [24]. Finally, a privacy protected video is generated

Fig. 4 Overview of BEPS. Privacy protected video frame is generated
for the frame in input frames enclosed by red.

by superimposing the ICPs onto the synthesized background
image. The following provides their details.

4. Background Estimation

In BEPS, we adopt Kim et al.’s method for its applicabil-
ity to the images from a moving camera; however, their
method is computationally infeasible when it is applied to
long videos. Thus, observing that successive frames in a
video resemble each other and hardly contribute to the back-
ground estimation, we introduce preprocessing and frame
selection stages to reduce the number of frames used for
background estimation.

Figure 5 shows an overview of our background estima-
tion. The preprocessing stage clusters the frames and ex-
tracts a representative frame for each cluster. Then, given
a target frame for which the background is estimated, the
frame selection stage further extracts a subset of representa-
tive frames that are suitable for it. In the estimation stage,
the algorithm based on [23] estimates the target frame’s
background using that subset. We further reduce the com-
putational burden by applying background estimation only
to representative frames and synthesizing the other frames
from them.

Preprocessing stage. Although there are many clus-
tering algorithms, e.g., k-means [25] and affinity propa-
gation [26], we develop a simple clustering algorithm to
confirm that each resulting cluster consists of consecu-
tive frames to simplify the synthesis of non-representative
frames.

Our clustering algorithm is provided in Algorithm 1.
Given set of frames in a video {Ft |t = 1, 2, . . . ,NFrame},
the algorithm outputs set of clusters S = {Ck |k =

1, 2, . . . ,NClusters}, where Ck is the k-th cluster. NFrame and
NCluster are the numbers of frames in the video and clusters,
respectively. The basic idea is building a cluster that con-
sists of consecutive frames that resemble the representative
frame. Let Ck and t be a current set of consecutive frames

Fig. 5 Overview of our background estimation. Target frame and frames
selected for it are indicated by red and green rectangles, respectively.
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Algorithm 1. Clustering algorithm.

input {Ft |t = 1, 2, . . . ,NFrame}
S ← ∅, t ← 1, k ← 1
while t < NFrame do

Ck ← ∅
repeat

Ck ← Ck ∪ {Ft}
Calculate criterion crit for set C′k = Ck ∪ {Ft+1}
Increment t

until crit > THcrit and |Ck | < THN
S ← S ∪ {Ck}
Increment k

end while
return S

and its largest time index, respectively. The algorithm cal-
culates criterion crit for C′k = Ck ∪ {Ft+1} by

crit(C′k) = max
Fτ

∏
Ft′ ∈C′k/Fτ

s(Ft′ , Fτ)
1
|Ck | , (1)

where C′k/Fτ is C′k but excludes Fτ and |Ck | is the number
of frames in Ck. s(Ft′ , Fτ) is the similarity between Ft′ and
Fτ based on the number of matched feature points, of which
detail is given in our previous paper [13]. The maximization
is calculated over C′k = Ck ∪ {Ft+1}. This finds a set Ck of
frames whose geometric mean of the similarities over Ck/Fτ
is high. If crit ≥ THcrit, the algorithm adds Ft+1 to Ck and
repeats this process until crit < THcrit holds true. Represen-
tative frame F∗k for Ck is defined as Fτ that maximizes crit.
In addition, the number of frames in a cluster is limited to at
most THN because too many frames in a few clusters exces-
sively suppress their contribution to background estimation.

Threshold THcrit controls the balance between the com-
putational cost and the accuracy of background estimation
with THN. A large value results in many small clusters and
raises the computational cost because the number of rep-
resentative frames increases. In contrast, a small value re-
sults in large clusters that decrease the accuracy of the es-
timated background of non-representative frames, because
the synthesized non-representative frames become different
from the actual ones. We used 100 for THcrit, which gave a
good balance (|Ck | averages 7.5 frames). The value of THN

was empirically set to 20.
Frame selection stage. Since the number of represen-

tative frames remains large for the graph cuts-based back-
ground estimation and may include frames that do not share
a field of view, we further extract frames that are suitable for
the background estimation of a given target frame. Observ-
ing that the suitable frames uniformly overlap with a major
portion of the target frame, i.e., the number of frames that
cover each pixel in the target frame is uniform, we extract
them as follows.

Let R = {F∗k |k = 1, 2, . . . ,NCluster} be the set of all rep-
resentative frames. As we estimate their backgrounds and
those of other frames are synthesized, target frame F∗T is an
element of R. We reinterpret the above observation as the
following maximization problem:

Fig. 6 (a) Original frame and (b) estimated background labels ln.

RT = arg max
R′⊂R

∑
F∗k∈R′

ZT(F∗k ) + γ
∑

F∗k ,F
∗
k′ ∈R′

D(F∗k , F
∗
k′ ), (2)

where ZT(F∗k ) is the proportion of the area of F∗T covered by
F∗k to the area of F∗T and D(F∗k , F

∗
k′ ) is the distance between

the frame centers of F∗k and F∗k′ projected to F∗T. Parameter
γ determines the contribution of each term. In this equa-
tion, the first term rewards frames with large overlapping
areas, and the second term rewards frames that give large
distances from the other frames in R′. The second term con-
firms that suitable frames are uniformly distributed over the
target frame. Since this criterion monotonically increases
as |R′| increases, we set the maximum number of frames in
R′ to 20, considering the computational burden of the graph
cuts algorithm. This maximization problem is computation-
ally expensive; therefore, a greedy algorithm finds a sub-
optimal solution by adding one frame to R′ at a time, where
the added frame gives the maximum value of the criterion.

Estimation stage. To construct the background of F∗T
using RT, we employ a method used in our previous sys-
tem’s background estimation [13], which is originally based
on [23]. The method assigns to each pixel of the target frame
F∗T a label, ln, indicating the frame whose corresponding
pixel’s color is most likely to be the background. The like-
lihood of being background color is measured based on the
assumptions that persons in video frames move while cap-
turing and that the pixel’s background color appears more
frequently than the moving persons (see [13] for more de-
tail).

Figure 6 (b) shows example labels obtained for the
frame shown in Fig. 6 (a). Black represents the regions
where ln = LT, and the other colors represent ln � LT, where
LT represents the target frame, i.e., colors of the pixels with
ln = LT remain the same. The resulting labels are referred
to as background labels.

5. ICP Detection and Extraction

To detect ICPs, we focus on our observation that a videog-
rapher pays much attention to them but less to the non-ICPs.
This difference is reflected in a videographer’s behavior,
namely, how she moves her camera. Based on this obser-
vation, we detect all the persons and classify them as ICPs
or non-ICPs using features that encode the videographer’s
behavior.

Assuming that videographers sufficiently capture the
ICPs so that at least their upper bodies are visible in the
frame, we first detect and track the upper bodies of all the
persons. There are many methods for detection and tracking
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Fig. 7 Vertical positions uY
t of ICPs (surrounded by green rectangles)

in the same frame tend to have similar values. Their sizes (uS
t ) are also

similar. Those values of ICPs and non-ICP (surrounded by red rectangle)
are different.

Fig. 8 Graphical representation of our CRF-based model. Lines con-
necting xt,k and yt,k represent local classifier terms f . Dashed lines are tem-
poral consistency terms g, which depend on yt,k and yt−1,k . Spatial terms h
hare represented by lines connecting yt,k and yt,k′ .

of persons, e.g., [27]–[29], but we assume that the detection
and tracking results are given so we focus on our goal of
video privacy protection.

Our ICP classification uses as features the trajectories

x = {(uX
τ , u

Y
τ , u

S
τ )|τ = 1, . . . ,NT} (3)

of tracked person in NT consecutive frames, where uX
τ and

uY
τ are the position of the detection window, and uS

τ is its
size, which can describe the videographer’s behavior with
respect to that person. For a person in the t-th frame, x con-
sists of his trajectory centered at that frame. Each feature is
normalized so that its mean and variance over the training
dataset can be 0 and 1, respectively.

For classifying each person as an ICP or a non-ICP, we
use a statistical model. To make viewers understand what
the videographers want to present, the videographers tend
to capture the same ICPs for a while. Also, some features
from a pair of ICPs in a single frame have correlation. For
example, the vertical position uY

t ’s of ICPs in the t-th frame
tend to have similar values as shown in Fig. 7. Taking these
into account, we adopt a CRF-based model. Let xt,k denote
the features extracted from the k-th person in the t-th frame,
and X the set of features from all persons in all frames. The
problem is to estimate label yt,k ∈ {−1, 1} for xt,k, where
yt,k = −1 means the non-ICP and yt,k = 1 means the ICP. We
denote a vector of all labels by y. Figure 8 shows a graphical
representation of our CRF-based model. Under this model,

the probability of y given X is obtained by

p(y|X) =
1
Z

exp
[
EICP(X, y)

]
, (4)

where Z is a normalization term, and EICP is the energy func-
tion defined as

EICP(X, y)=
∑
t,k

f (xt,k, yt,k) +
∑
t,k,k′

ht,k,k′ (yt,k, yt,k′ )

+
∑
t,k

g(yt,k, yt−1,k), (5)

consisting of local classifier terms f , spatial relationship
terms h, and temporal consistency terms g.

A local classifier term indicates how likely the person
with xt,k is an ICP. Basically, our CRF-based ICP model
is linear, i.e., all terms are linear combinations of features;
therefore, to improve the discrimination power, we employ
a two-step approach. First, we learn a classifier f̃ (xt,k) for
which we employ a support vector machine (SVM) with all
features in xt,k. Second, as f , we use a linear function with a
bias term that takes the decision value f̃ (xt,k) as well as uX

t,k,
uY

t,k and uS
t,k as a feature. To summarize, our local classifier

term is

f (xt,k, yt,k) = yt,kw�uF
t,k, (6)

where the feature vector uF
t,k = (1, uX

t,k, u
Y
t,k, u

S
t,k, f̃ (xt,k))� and

the parameter vector w = (w0, w1, w2, w3, w4)�. This local
classifier term uses the position and size of the t-th frame’s
detection window multiple times to emphasize their impor-
tance in classification.

A temporal consistency term describes the relationship
between the labels yt,k and yt−1,k, defined as

g(yt,k, yt−1,k) =

{
a if yt,k = yt−1,k

0 otherwise
. (7)

Negative a rewards consistent labels while positive a penal-
izes them.

Our spatial relationship term makes use of the corre-
lation among ICPs. We design six features that encode
such correlation between a pair of persons in a frame, i.e.,
|um

t,k − um
t,k′ | and |um

t,k + um
t,k′ | (m ∈ {X,Y,S}). We denote a vec-

tor containing them together with 1 for a bias parameter by
uH

t,k,k′ . The spatial relationship term is

ht,k,k′ (yt,k, yt,k′ ) = −yt,kyt,k′v�uH
t,k,k′ , (8)

where v = (v0, v1, v2, v3, v4, v5, v6).
All parameters w, v, and a can be determined via learn-

ing. However, we learn w and v but not a to demonstrate the
effect of temporal consistency term. For learning, we em-
ploy contrastive divergence learning [30], which is repeat-
edly applied for various values of a. The feature vectors
uH

t,k and uF
t,k are normalized so that the mean and variance

of each element over the training dataset can be 0 and 1,
respectively.

To present ICPs in privacy protected videos, they are
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Fig. 9 (a) Shape prior constructed using a dataset of manually labeled
images. (b) ICP detection result. (c) Obtained ICP labels l̄n. (d) Combined
labels l̃n.

extracted from the original frames again using the graph cuts
algorithm as in [13]. More specifically, it infers ICP labels
l̄i ∈ {0, 1}, where l̄i = 0 represents that the i-th pixel belongs
to an ICP and l̄i = 1 otherwise. To maintain the detail of
ICPs’ shape, the algorithm works on pixels in all frames,
not grids consisting of 5 × 5 pixels in representative frames
as in background estimation. Figure 9 (c) shows an example
of the obtained labels. The blue region represents l̄i = 0, and
the black region represents l̄i = 1. In this example, the ICP is
accurately extracted. Our previous paper [13] provides more
detail.

6. Privacy Protected Video Generation

Privacy protected video frames are generated by superim-
posing the extracted ICPs onto the estimated background
image. Although BEPS potentially generates videos shown
in Fig. 2, we implement only non-ICP removal. Other types
of obscuration can easily be implemented after non-ICP re-
moval.

Since BEPS only applies background estimation to
the representative frames, it synthesizes the background of
the non-representative frames based on the representative
frames. First, l̄i in Ft is projected to the two nearest repre-
sentative frames. Combined label l̃i for each representative
frame is then generated:

l̃i =

{
LT if l̄i = 1
ln otherwise

, (9)

where ln is the label for Ωn that contains the i-th pixel.
An example of l̃n is shown in Fig. 9 (d). The regions with
l̃n � LT are replaced by the pixels from the representative
frames corresponding to l̃n. Since pixel values from differ-
ent frames may differ due to illumination change, for exam-
ple, to prevent visual artifacts, we use Poisson blending [31].
After reconstructing two frames from l̃n and two represen-
tative frames, we again project them to target frame Ft and
add them with a weight. That is, by letting Hk,t(B′k) and
Hk′,t(B′k′ ) be the projection of the two reconstructed frames,
B′k and B′k′ , we generate privacy protected video frame Bt by

Bt = ωk,k′ (t)Hk,t(Bk) + [1 − ωk,k′ (t)]Hk′,t(Bk′), (10)

where ωk,k′ (t) = (t − tk)/(tk′ − tk) is a weight. tk and tk′ are
the indices of the k-th and k′-th representative frames.

7. Experimental Results

We first evaluate the performance of ICP detection using our
dataset, comparing it with several baselines including [10].
Then we demonstrate the advantage of BEPS over our pre-
vious system [10] using several example videos. We also
show the impact of the frame selection stage on the risk of
privacy disclosure by comparing the performance of BEPS
with and without it.

7.1 Performance Evaluation of ICP Detection

To evaluate ICP detection, we used a video dataset con-
sisting of 20 videos. We could not use publicly available
video datasets because they did not contain ground truth la-
bels of ICPs and non-ICPs, which should be specified by the
videographers who captured them. Instead, we collected the
dataset ourselves†. We employed three videographers, and
they captured the videos from various situations including
both indoor and outdoor scenes. The main subjects were
moving and static people. The videographers then manu-
ally assigned to their video a label identifying each person
as either ICP or non-ICP in each frame. The frame size of
these videos was 854 × 480 pixels, and the frame rate was
30 frames per second. The total number of frames in the
video dataset was 32,725. As mentioned in Sect. 5, we did
not apply person detection but instead manually specified
them. After manually specifying the individuals in the video
dataset, videographers assigned to each person a label repre-
senting ICP or non-ICP. The cumulative total number of per-
sons was 56,067, where the numbers of ICPs and non-ICPs
were 38,122 and 17,945, respectively. We manually tracked
the persons in the videos, which resulted in 361 tracked per-
sons, where tracking was terminated if the person’s upper
body was disappear or occluded. Among them, 251 per-
sons were tracked more than 30 frames, 151 persons were
labeled as ICP in more than one frame. We adopted five-
fold cross-validation, where 16 videos were used for SVM
training and CRF model parameter learning, and five others
for evaluation. We employed false positive rate (FPR) and
true positive rate (TRP) as performance measures.

Figure 10 (left) shows the AUC values for various a. To
generate ROC curves from y∗, we calculated the probability
of yt = 1 given X and y∗ by

p(yt = 1|X, y∗\t) =
p(yt = 1, X, y∗\t)∑
yt∈0,1 p(yt, X, y∗\t)

, (11)

where y∗\t is y∗ excluding the t-th element y∗t , and we ap-
plied thresholding to this probability. The result indicated

†We will provide our dataset with ground truth labels upon re-
quest. Please contact the first author.
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Fig. 10 Left: AUC values for various a. Right: ROCs for our proposed
ICP detection (OURS) and various baselines.

that a = 0.05 gave the best performance, which means that
our temporal consistency term is not very significant in our
model. This can be explained by our new features fed to the
SVM: They are a trajectory of detection window’s position
and size, and is temporally redundant. Therefore, temporal
consistency is already counted in the features.

To show the superiority of our ICP detection (OURS),
we compared it with three baselines: our previous ICP de-
tection method used in [10] (PREV), the raw SVM decision
value-based method [12] (RAW-SVM), and human annota-
tors (HUMAN). In RAW-SVM, we directly applied thresh-
olding to decision values. PREV improved the detection ac-
curacy using ICPs’ temporal consistency. We used the same
parameters as [10] for PREV. To evaluate the performance
of the human annotators, six human annotators† individually
inferred whether a person in the videos was an ICP. For this,
we assigned specific IDs to all the persons in the videos.
For each ID, each human annotator specified the frames in
which she/he inferred that the corresponding person was an
ICP. A person in a frame was judged to be an ICP if four or
more human annotators agreed. Figure 10 (right) shows the
ROC curves. The human annotators outperformed the oth-
ers. OURS and PREV worked better than RAW-SVM, indi-
cating that ICPs’ temporal consistency improved the perfor-
mance. Our ICP detection outperformed PREV.

7.2 Comparison with Our Previous System

We evaluated BEPS’s capability for privacy protection and
video content preservation by comparing it with our previ-
ous system (BASELINE) [10]. The parameter γ for BEPS
was empirically set to 1. An example frame of BASELINE
is shown in Fig. 1 (a). To show the potential performance of
BEPS and BASELINE, we used the ground truths of ICPs
and non-ICPs specified by the videographers of our video
dataset instead of person detection and the ICP classification
results. In some videos, persons were not manually speci-
fied because they were too small or were only partially cap-
tured. For fair comparison, we clarified whether such non-

†The human annotators were students in our laboratory, ex-
cluding the authors and videographers who captured the videos in
our dataset.

Fig. 11 Definitions: (a) ΩT consisting of black pixels and (b) ΩICP and
ΩNON-ICP.

ICPs were included in each video. In addition, for demon-
strating BEPS’s immunity to the failure of person detection
and ICP classification, we randomly dropped the manually
specified persons at the rate of ε to simulate failure, where ε
was set to either 0 or 0.1.

As evaluation measures for BEPS, we defined removal
rate (RR) and preservation rate (PR) as follows:

RR =
|Ω̄T ∩ΩNON-ICP|
|ΩNON-ICP| , PR =

|ΩT ∩ΩICP|
|ΩICP| , (12)

where ΩT is the set of pixels with l̄n = LT, as in Fig. 11 (a),
and Ω̄T is its complementary set. ΩICP and ΩNON-ICP are
the sets of the pixels in ICPs and non-ICPs, respectively,
and were manually labeled for all representative frames
(Fig. 11 (b)). The RR and PR stand for how accurately BEPS
removes the pixels belonging to non-ICP and how accu-
rately BEPS retains the pixels belonging to ICPs, respec-
tively. For BASELINE, we deemed the blocked out regions
to be Ω̄T and used the same definitions as BEPS. We em-
pirically determined the regions to be blocked out based on
the manually specified detection windows so that most of a
non-ICP region was blocked. Some ICP regions may also be
partially blocked out if their positions are close to the non-
ICPs. Since the performances of the background estimation
and ICP extraction largely depend on the video content, such
as camera motion and person motions, we show RR and PR
for each representative frame instead of the statistics of our
video dataset. In addition, we applied BEPS to four videos
in our dataset, but the evaluation measures are presented for
their excerpts with textual descriptions of their content.

Figure 12 shows RR (left) and PR (right) for each rep-
resentative frame of VID1–VID4, where the black dots on
the horizontal axes are the representative frames. Figures
13–16 are examples of the original and generated frames
in VID1–VID4 for ε = 0. In these figures, the red rectan-
gles indicate ICPs. Brief textual descriptions of each excerpt
(about 10 s) with the length of the original video follow:

• VID1 (64.9 s, Fig. 13): The videographer first captured
a sitting person as an ICP until around the 100-th frame.
Then two persons were captured as non-ICPs, corre-
sponding to the interval without RR in the first row of
Fig. 12. Finally, the person who was an ICP at the be-
ginning became a non-ICP, and the other person was
captured as an ICP.

• VID2 (63.9 s, Fig. 14): This video contained two per-
sons. First, one person was an ICP and the other was a
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Fig. 12 Comparision: RR (left) and PR (right) between BEPS and
BASELINE for VID1–VID4 (from top to bottom).

non-ICP who was partially out of the frame. Then the
videographer captured both as ICPs.

• VID3 (9.93 s, Fig. 15): VID3 kept capturing two ICPs.
After the 200-th frame, some non-ICPs occluded the
two ICPs. Since the non-ICPs intersected the camera’s
field of view, they were partially captured when they
were framed in and out.

• VID4 (40.9 s, Fig. 16): There were four persons, one of
whom was an ICP. One of the non-ICPs in this video
was too small, and another was only partially captured.

For ε = 0, the RR values gave comparable results for
BEPS and BASELINE in most videos. However, in some
videos, BEPS’s RR values dropped, which was significant
after the 100-th frame in VID1. This RR degradation was
caused by background estimation failure. Our background
estimation, which is analogous to median-based methods,
basically fails to estimate the background when non-ICPs
do not move, as in the third to fifth frames in Fig. 13. The

Table 1 Timing results.

VID1 VID2 VID3 VID4
# frames 1947 1917 298 1228
# representative frames 196 308 14 63
Background estimation 5289 s 6488 s 1067 s 4863 s
ICP detection & extraction 757 s 780 s 109 s 461 s
Privacy protected video gen. 1552 s 1001 s 303 s 1632 s
Total 7598 s 8270 s 1479 s 6957 s

slight degradation in the RRs of VID2, VID3, and VID4 was
also caused by the failure in the background estimation.

The PR of BEPS was mostly lower than BASELINE.
This was caused by our inflexible shape prior. To present
ICPs in privacy protected videos, BEPS extracts them from
the original video frames and superimposes them on an es-
timated background. In this process, our shape prior for
ICP extraction gave a weak likelihood of being included
in an ICP region when its actual shape was different from
our shape prior shown in Fig. 9 (a). This resulted in the
failed extraction of the exact shapes of ICPs, especially for
feet and arms. The inflexibility of our shape prior also
led to blurring-like visual artifacts due to Poisson blend-
ing (Fig. 16). Employing a human pose estimation tech-
nique (e.g., [28]) can relax this inflexibility by deforming
the shape prior based on a person’s pose, although its imple-
mentation is beyond the scope of this paper.

For ε = 0.1, BASELINE’s RR values significantly de-
graded in some frames because some manually detected
persons were randomly dropped. This result implies that
BASELINE and all other conventional systems that detect
persons to be obscured are vulnerable to detection failure
of non-ICPs, resulting in their complete disclosure. On the
other hand, the RR values did not change for BEPS, and
thus, it was immune to the detection failure. Such insen-
sitivity is desirable for privacy protection systems because
failure in person detection does not lead the disclosure of
the privacy sensitive information, although it in turn depends
on the performance of background estimation. In contrast,
BEPS’s PR values fell due to randomly dropped persons,
and BASELINE was insensitive to detection failure of ICPs.

Table 1 shows the timing results on Windows 7 PC with
Intel Core i7 CPU at 3.4 GHz and 16 GB memory. We im-
plemented ICP detection in Python and all other components
in C++. Background estimation for representative frames
took processing time the most, although it was applied only
to representative frames. It took roughly 5 s per frame on
average. The graph cuts algorithm, which is used in all pro-
cesses, was the bottleneck.

7.3 Validation of Frame Selection Stage

To investigate the influence of the frame selection stage on
BEPS’s capability in privacy protection and video content
preservation, we compared BEPS with and without it, where
BEPS without the frame selection stage simulates our sys-
tem in [13]. We used the same videos and parameters as in
Sect. 7.2, and ε was set to 0. As mentioned above, handling
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Fig. 13 Examples of original frames (top) and resulting frames (bottom) for VID1. ICPs are indicated
by red rectangles.

Fig. 14 Examples of original frames (top) and resulting frames (bottom) for VID2. ICPs are indicated
by red rectangles.

Fig. 15 Examples of original frames (top) and resulting frames (bottom) for VID3. ICPs are indicated
by red rectangles.

Fig. 16 Examples of original frames (top) and resulting frames (bottom) for VID4. ICPs are indicated
by red rectangles.

long videos is practically infeasible without the frame se-
lection stage because such videos have many representative
frames and require a large amount of memory for process-
ing. Therefore, we extracted an excerpt from each video
and applied BEPS without the frame selection stage to it,
while we applied BEPS with the frame selection stage to
the entire video and extracted the evaluation result that cor-
responds to the excerpt. In this way, we show that the frame
selection stage can give suitable representative frames for a
target frame from an entire video.

Figure 17 shows the evaluation results. The results for
BEPS with frame selection stage were almost identical to
those when ε = 0 in the previous section. Without the
frame selection stage, BEPS’s background estimation failed

in VID2 and gave low RR values. This is because the ex-
cerpt did not contain the background pixels, while BEPS
with frame selection stage selected suitable frames from the
other part of the original video. The slight difference in RR
and PR was caused by the difference in the frames used for
the background estimation. These results indicate that the
frame selection stage enabled BEPS to handle long video se-
quences without significantly the RR and PR performances.

8. Discussion

This section discusses (i) how BEPS fulfills the require-
ments in Sect. 1 and (ii) the limitations of BEPS.

(i) Fulfillment of requirements. A system for social
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Fig. 17 Comparisons: RR (left) and PR (right) between BEPS with and
without frame selection stage for VID1–VID4 (from top to left).

video privacy protection must fulfill the requirements men-
tioned in Sect. 1. Similar to our previous system [10], [11],
BEPS successfully satisfied requirement 1) in most cases
using ICP detection. For requirement 2), BEPS can pro-
vide various appearance obscuration methods, as in Fig. 2,
based on the estimated background. Although we did not
experimentally demonstrate various appearance obscuration
methods except the complete removal of the appearance, im-
plementation is trivial for most of them.

(ii) Limitations. From the experimental results, BEPS
worked well for video in which non-ICPs move. Compared
with such conventional systems as [10], which first detect
individuals to be obscured and then apply a privacy obscu-
ration method, BEPS was immune to the failure of person
detection. This immunity is preferable for privacy protec-
tion. In conventional systems, the failure of person detec-
tion directly resulted in privacy disclosure. In contrast, it
resulted in missing ICPs in BEPS but did not disclose non-

ICPs. However, our results also exposed two limitations.
First, in principle, background estimation fails if non-

ICPs are stationary, which leads to privacy disclosure. VID1
clearly showed this problem. From the third to sixth frames
in Fig. 13, the person on the left side was a non-ICP, but the
current implementation of BEPS failed to remove him. To
address this problem, we need to use the output of a per-
son detection algorithm so that BEPS can identify the re-
gions that potentially contain non-ICPs. If the background
for these regions is not estimated (i.e., ln = LT), such a tech-
nique as image inpainting removes non-ICPs. However, this
approach spoils one of the advantages of BEPS: insensitivity
to the low detection accuracy of non-ICPs. Another possible
approach is incorporating [32], which automatically detects
regions in which the background estimation failed and ap-
plies image inpainting to them.

The second problem is the inflexibility of the shape
prior. Currently, we use a shape prior of persons that does
not change regardless of their pose. In addition, since we
built it as an averaged region of a body, our ICP extraction
fails to extract body parts that are invisible in many videos in
our dataset, such as feet. As mentioned above, human pose
estimation techniques (e.g., [28]) can solve this problem by
modifying the shape prior based on estimated poses.

9. Conclusion

We developed a system called BEPS to protect privacy in
social videos. Privacy protection for videos in SNSs is a
new class of problems that requires privacy obscuration and
video content preservation. For this problem, BEPS first
estimates the background of the video frames and superim-
poses the detected ICPs on it. The advantage of BEPS is
that it does not require accurate non-ICP detection, which
is usually more difficult than accurate ICP detection. We
experimentally showed that our ICP detection achieved an
AUC value of 0.91, and our ICP extraction and background
estimation worked well if non-ICPs move. Also, we demon-
strated that BEPS was preferable to conventional systems
due to its immunity to detection failure. Our experimental
results also implied that background estimation and ICP ex-
traction might fail, but BEPS’s advantage over conventional
systems makes it a beneficial alternative for social video pri-
vacy protection. Future work includes implementing a more
sophisticated shape prior using, e.g., human pose estima-
tion [28] and various privacy obscuration as shown in Fig. 2.
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