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Augmented Reality Marker Hiding
with Texture Deformation
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Abstract—Augmented reality (AR) marker hiding is a technique to visually remove AR markers in a real-time video stream. A
conventional approach transforms a background image with a homography matrix calculated on the basis of a camera pose and
overlays the transformed image on an AR marker region in a real-time frame, assuming that the AR marker is on a planar surface.
However, this approach may cause discontinuities in textures around the boundary between the marker and its surrounding area when
the planar surface assumption is not satisfied. This paper proposes a method for AR marker hiding without discontinuities around
texture boundaries even under nonplanar background geometry without measuring it. For doing this, our method estimates the dense
motion in the marker’s background by analyzing the motion of sparse feature points around it, together with a smooth motion
assumption, and deforms the background image according to it. Our experiments demonstrate the effectiveness of the proposed
method in various environments with different background geometries and textures.

Index Terms—Marker hiding, Diminished reality, Texture deformation.
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1 INTRODUCTION

W ITH the commodification of smartphones, tablets,
and portable game consoles, applications using aug-

mented reality (AR) are becoming available to ordinary
users, such as furniture arrangement simulation and AR
games with virtual characters, overlaying various objects
on a real-time video stream capturing a real environment.
These applications need to estimate the camera pose in
real-time, and various approaches have been employed,
e.g., simultaneous localization and mapping (SLAM)- and
AR marker-based approaches [1], [2], [3], [4]. Although
the SLAM-based approaches [2], [3], [4] have been inten-
sively studied in these days, the marker-based approach
[1] is widely and practically used because of its easiness
of putting virtual objects on users’ desired positions and
its robustness against various textures and shapes in the
scene. However, the marker-based approach requires the AR
markers to be visible, which may hinder seamless fusion of
the real environment and virtual objects.

For this problem of the AR marker-based approach,
some methods for AR marker hiding have been proposed,
which aim to visually remove the markers from a real-time
video stream. Siltanen et al. [5] synthesizes a background
image by mixing several pixel values around the marker
for each frame and replaces the marker region with it. This
simple method works quite fast but may cause significant
visual artifacts, especially on complex textures. To overcome
the problem, Korkalo et al. [6] and Kawai et al. [7] proposed
AR marker hiding based on the planar assumption, in which
the AR marker and the background surface are both on the
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same plane. They generate a background image by applying
an image inpainting method, which estimates background
images behind some objects from their surrounding regions,
to a marker region in a certain frame in a real-time video
stream, and overlay it on each subsequent frame with
transforming it with a homography matrix. They also adjust
image intensities in the generated background for reducing
discontinuities around the boundary between the marker
region and its surrounding, which are caused by changes
in lighting conditions. However, these methods may still
suffer from discontinuities on the boundary because the
marker is often placed on a nonplanar surface or the marker
is attached to a thick base, such as cardboard, so that the
marker cannot bend.

In this work, considering a scenario in which a user
wants to hide a marker in AR applications without much
burden (e.g., measuring an accurate shape behind a marker
by capturing the scene from multiple viewpoints before
placing the marker), we propose a method for AR maker
hiding, which is an extension of [8], with which a user
can visually remove a marker in the real-time video stream
under nonplanar background geometry and thickness of
the marker base. Our method obtains a background image
by capturing a single image before placing a marker or
applying image inpainting to an image with a marker. Given
a new frame from the real-time video stream, it overlays
the background image on the marker region with geometric
deformation and photometric adjustment. In order to relax
the planar assumption employed in [6], [7], our method
estimates pixel-wise motion of the marker’s background to
deform the background image according to it and overlays
the deformed image on real-time frames. This approach re-
duces discontinuities on the boundary between the marker
region and its surrounding.

The rest of this paper is organized as follows. The next
section briefly summarizes related work and our contribu-
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tion. Sections 3 to 6 describe the proposed method. In Sec-
tion 7, we show experimental results and give discussion.
We conclude this paper in Section 8.

2 RELATED WORK AND CONTRIBUTION

For AR marker hiding, using the diminished reality technol-
ogy, which visually removes a variety of real objects in real
time, is a promising approach. On the other hand, real-time
texture deformation, which has been tailored for various AR
applications overlaying textures on objects with nonplanar
geometry, is also a possible approach. In this section, con-
sidering the scenario of this study, we first describe some
methods for diminished reality and texture deformation. We
then summarize the contribution of this paper.

2.1 Diminished Reality

Methods for diminished reality can be classified into three
categories: ones using multiple cameras, using preliminarily
captured background images, and using image inpainting.

The methods using multiple cameras [9], [10], [11],
[12], [13] are mainly designed for applications, such as a
see-through system to remove view-blocking buildings for
traffic safety [9], [13]. They capture a scene from different
camera positions simultaneously, and remove objects in an
image taken with one of the cameras using the background
images taken with the other cameras. They are basically
inapplicable to AR marker hiding because AR markers are
usually put on such an object as a table, a wall, and a floor,
and thus the background is not visible from any cameras.

As the methods using preliminarily captured back-
ground images, the method in [14] uses the previously
captured image that contains the background due to motion
disparity. In [15], [16], users or system providers preliminar-
ily capture the multiple background images with physically
removing occluding objects. The method in [17] collects
images capturing the target scene from the Internet to ob-
tain background images. These methods then overlay the
background image on target objects’ regions in the real-time
frames to visually remove the target objects. The main chal-
lenges in these methods are how to find an image suitable
for a current frame from a number of background images
and how to transform the background image for seamlessly
overlaying it on the frame. Lepetit et al. [14] calculate 3D
positions of feature points in the scene and apply Delaunay
triangulation to the projected 2D coordinates of the feature
points on each frame. When a triangle contains the target
objects, the method searches previously captured images
for the nearest frame with the background and replace the
texture in the triangle with the background image using
a homography transformation. Cosco et al. [15] and Mori
et al. [16] select background images on the basis of the
view-dependent texture mapping criterion [18], assuming
that the background geometry is known or estimated as
a mesh model. Takeda et al. [19] presume that a user
takes a distant landscape video, and the background image
captured in the nearest frame is overlaid on occluders’
regions with homography based on SIFT feature matching
[20]. Li et al. [17] search the Internet for the images that
were captured from the position close to the current frame,

and transform the image using a homography matrix. In
any case, these methods are required to satisfy one of the
following conditions: (i) the background geometry is known
or reconstructed with high accuracy, (ii) a background object
is distant enough so that its transformation can be approx-
imated by homography, and (iii) the images are densely
captured from various viewpoints. Otherwise, it is difficult
to seamlessly overlay the background images on real-time
frames.

The methods using image inpainting can be further
classified into ones that generate a background image for
each frame [21], [22] versus one that generates a background
image in a certain frame and adjusts it geometrically and
photometrically for other real-time frames [23]. The former
can generate a plausible background image for each frame
in many cases, but applying image inpainting to each frame
may cause temporal inconsistency in the target region. As-
suming that the background geometry is approximated by
multiple local planes, the latter transforms a background
image generated for a certain frame using homography
for each plane in each frame. However, this method may
also suffer from the texture discontinuities on the boundary
between the target region and its surrounding if the assump-
tion about the background geometry is not satisfied.

2.2 Texture Deformation

Real-time texture deformation methods using images cap-
tured with an RGB camera have been developed for AR
applications such as virtual clothing. These methods first
set an initial surface mesh to a target object. They then
estimate the deformation of a target object and transfer
textures to the object according to the deformation. Ehara et
al. [24] proposed to learn the relationships between T-shirts’
silhouettes and their deformations for applying a texture
on a T-shirt. While this method needs a T-shirt with many
markers on it for learning deformations, Pilet et al. [25]
estimate the surface deformation by tracking feature points
without using markers. Hilsmann et al. [26] use optical flow
to estimate the deformation of surface instead of feature
points.

In these AR applications based on texture deformation,
misalignment by several pixels is not a crucial issue because,
especially in such AR applications, the texture transferred to
the target object is very different from the object’s original
texture and users usually do not care about such a small
misalignment. In diminished reality applications, on the
other hand, users obviously notice even small misalignment
of textures because it causes the discontinuities in homoge-
neous textures. Therefore, misalignment can be perceptually
more severe for diminished reality applications than AR.
Considering this point, the method in [25], for example, is
not applicable to diminished reality applications because it
can give a few pixel errors of correspondences and thus
discontinuities can be significant.

2.3 Our contribution

In the scenario of AR marker hiding, existing diminished
reality approaches using preliminarily captured background
images can render a background image of scenes with
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various textures and geometries from an arbitrary view-
point because they assume that the geometry is known or
accurately reconstructed. However, a user can put a marker
on an arbitrary place and thus background geometry is
unknown in general. Also, acquiring background geometry
using, e.g., muti-view stereo [27], usually takes much time,
and its accuracy largely depends on the amount of informa-
tive textures in the scene (e.g., it is difficult to reconstruct
geometry of scenes with stripe patterns and no texture),
which may hinder the users from using it.

On the other hand, image inpainting-based methods
require no preliminary preparations but the planar assump-
tion in the background geometry. This strong assumption
often results in discontinuities of textures on the boundary
between the marker region and its surrounding.

Real-time texture deformation methods can overlay tex-
tures on nonplanar objects by estimating their geometry
from images. Since these methods are designed for AR
applications, misalignment between the real objects and
overlaid objects may be acceptable; however, in diminished
reality applications, it is not acceptable because even small
misalignment is noticeable. In addition, since the deforma-
tion methods use a mesh composed of sparse points and
triangles, the resolution of mesh also has influence on the
misalignment.

Although the proposed method works well for a lit-
tle limited types of background geometries compared to
the approaches using preliminarily captured background
images with known or accurately reconstructed geometry,
it can achieve AR marker hiding without measuring the
background geometry. The main contributions of this paper
are as follows:

(1) We introduce texture deformation for AR marker
hiding to deal with nonplanar background geom-
etry, marker thickness, and a variety of textures.

(2) We modify a feature detection method and propose
a tracking method for AR marker hiding, which pro-
vide a guide for compensating texture displacement
without knowledge of background geometry.

(3) We design an energy function for real-time and
pixel-wise texture deformation with maintaining
continuity of texture. Our energy function can be
quickly minimized using GPUs.

3 OVERVIEW OF AR MARKER HIDING

Figure 1 shows the flow diagram of our AR marker hid-
ing. The proposed method consists of two processes: (I)
obtaining a background image and (II) hiding an AR marker
in each frame in a real-time video stream. Note that we
describe our method assuming that our target AR marker
is a square one which is used for some AR libraries such
as ARToolkit [1]. However, any shape of the marker is
acceptable as long as a homography matrix for rectifying
an image is appropriately calculated.

In process (I), our method first obtains a background
image without a marker by either preliminarily capturing
an actual background or applying an image inpainting
method to the AR marker region. As illustrated in Fig. 2,
when preliminarily capturing the background image, we
first capture a background image (I-1) and subsequently

(II) Marker hiding for every frame

(II-1) Capture a frame

(II-2) Estimate a camera pose

(II-6) Overlay the background image

(II-3) Rectify the frame

(I’-1) Capture an image   
with a marker

(II-5) Adjust intensities of the background image

(I) Obtainment of background image

(I’-2) Rectify the image

(I’-3) Inpaint the image

N
ext fram

e

(II-4) Deform the background image

(II-7) Display the marker-less frame

Rectified background image

(I-1) Capture a  
background image

(I-2) Place a marker while 
the camera pose fixed

Preliminary capturing Image inpainting

(I-4) Detect feature points and calculate confidences

(I-3) Rectify the image

Fig. 1. Flow diagram of the proposed marker hiding.

place a marker while the camera pose fixed (I-2). Next,
it finds the homography matrix to transform the image
with the AR marker so that the marker can be square.
The homography matrix then transforms the background
image captured in (I-1) to obtain a rectified background
image B (I-3). For the image inpainting case, we follow
our previous marker hiding method [7]. Specifically, we first
place a marker and capture an image with a marker (I’-1).
The captured image is rectified so that the marker can be
square (I’-2). An image inpainting method then generates
the rectified background image B (I’-3). Our method then
detects feature points around the marker region in rectified
background image B and calculates the confidences of the
feature points (I-4).

In process (II), our method visually removes the marker
in a real-time video stream. It first acquires a frame from
the real-time video stream (II-1) and estimates the camera
pose using the marker in the frame (II-2). The frame is
rectified as in process (I) using the homography matrix
that is calculated so that the marker’s shape and size in
the rectified frame can be the same as those in the image
obtained in process (I) (II-3). Next, we find the pixels in the
rectified frame that correspond to the feature points detected
in B (II-4), deforming B on the basis of the feature point
correspondences (II-4). Poisson blending [28] then adjusts
RGB intensities of the deformed image to compensate for
the difference in intensities between the rectified frame and
the deformed background image (II-5). The background
image is transformed using the inverse of the homography
matrix obtained in (II-3) and is overlaid on the marker in the
original frame (II-6). Finally, the resulting frame is displayed
(II-7). It should be noted that processes (I) and (II) can be
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B

Fig. 2. Obtainment of rectified background image B.

Ω∂Ω ΩΩ∂

Fig. 3. Examples of detected feature points in region ∂Ω.

done simultaneously for the image inpainting case as in [7].
In the following sections, we describe feature point de-

tection and confidence calculation in (I-4), real-time back-
ground image deformation (II-4), and intensity adjustment
of the background image (II-5).

4 DETECTION OF FEATURE POINTS AND CALCU-
LATION OF CONFIDENCE

In (I-4), we first determine marker region Ω, which con-
tains the AR marker region and its surrounding so that
Ω is slightly larger than the actual marker region in the
rectified background image. We also determine the marker’s
surrounding region ∂Ω which is the relative complement of
Ω in its dilated region by l pixels, as shown in Fig. 3. We then
detect feature points in ∂Ω and calculate the confidence for
them.

A number of methods have been proposed so far for
feature point detection, such as Harris [29], GFTT [30], SIFT
[20], SURF [31], and FAST [32]. These methods use a certain
criterion for each pixel and extract a pixel as a feature point
if, e.g., the criterion for that pixel exceeds a preliminarily
determined threshold. However, such methods often result
in failure to extract feature points useful for background
image deformation. For example, GFTT [30] with a certain
threshold could not extract feature points around corners
in the bottom-right region of Fig. 4 because the contrast is
relatively low and thus the criterion values for pixels in this

Fig. 4. Example of feature detection using a certain threshold.
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Fig. 5. Confidence of feature point.

region do not exceeds the threshold. In addition, feature
points by these methods are not uniformly distributed in
general but concentrated in regions with rich texture. Also,
they basically detect feature points only at or around cor-
ners, and few feature points are detected on straight edges
because they are not unique (i.e., the aperture problem).

In order to alleviate discontinuities in textures, our fea-
ture detector should satisfy the following requirements.

• Feature points should distribute as uniformly as pos-
sible.

• The number of feature points should be sufficiently
large for accurate motion interpolation.

• Feature points should be detected not only on cor-
ners as shown in Fig. 3(left) but also even on straight
edges if there are no corners around them as shown
in Fig. 3(right).

In addition, each feature point should have a confidence as
a measure of uniqueness as shown in Fig. 5 for our texture
deformation described later.

Considering these requirements, our proposed method
employs GFTT [30] with some modifications as our feature
point detector. GFTT provides an eigenvalue for each pixel
as a criterion, which is the smaller one out of two eigen-
values according to the direction of texture, and we use it
as the confidence as well. Specifically, to achieve uniform
distribution of feature points and not to miss useful feature
points, we first calculate the criterion values for all the pixels
in ∂Ω, and then sequentially test each pixel in descending
order of their criterion values if it satisfies the condition
that the distance between the pixel and any feature point
obtained so far is larger than L (where L is a constant). If
a pixel satisfies the condition, we use the pixel as a feature
point. Finally, we normalize each feature point’s criterion
value so that the highest value can be one, and use it as the
confidence for that feature point. It should be noted here
that we do not use a preliminaryly determined threshold
for detecting feature points unlike common use of feature
detectors. Hereinafter, we denote the k-th feature point in
∂Ω in background image B by xB

k .
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Fig. 6. Illustration of determination of correspondences.

5 DEFORMATION OF BACKGROUND IMAGE BASED
ON MOTION INTERPOLATION

Process (II-4) first makes correspondences between feature
points selected in the marker’s surrounding region ∂Ω in
rectified background image B and pixels in the rectified
frame. This process then interpolates the motion in the
marker region Ω and its surrounding region ∂Ω using the
correspondences and deforms the rectified background im-
age on the basis of the interpolated motion. In the following
sections, we describe the background image deformation for
the f -th frame.

5.1 Correspondence in marker’s surrounding region

We determine pixel yf
k in the rectified f -th frame corre-

sponding to feature point xB
k in region ∂Ω in rectified

background image B, basically by finding a region in the f -
th frame similar to the local patch around xB

k . Considering
that our method is in a sufficiently high frame rate, we
presume that yf

k is in the region G(yf−1
k ) centered at yf−1

k

as shown in Fig. 6. Region G(yf−1
k ) can be small because,

even without the planner assumption, a point sufficiently
close to the marker remains at almost the same position
regardless of the camera motion thanks to the rectification
of input images.

Here, assuming the motions of neighboring feature
points are similar, our method finds pixel yf

k corresponding
to xB

k from the limited search region G(yf−1
k ) in descending

order of xB
k ’s confidence by

yf
k = argmax

y′∈G(yf−1
k )

NCC(xBk , y′)

1 +
∑

xBl ∈MxB
k

Ds(t)
, (1)

where s = xBk − xBl and t = (y′ − xBk ) − (yf
l − xBl ).

NCC(xBk , y′) is the normalized cross correlation between
the patch centered at pixel xBk in rectified background image
B and the patch centered at pixel y′ in the rectified f -th
frame. MxBk

is the set of the feature points whose confidences
are higher than xBk in the region around feature point xBk .
This means that MxBk

contains the feature points to which
corresponding pixels have been already determined in the
rectified f -th frame. Ds(t) is a cost term based on the dis-
tance between feature points in rectified background image
B and the difference in shift vectors of the feature points in

current frame f for preventing neighboring feature points
from moving in a different way (i.e., preventing wrong
correspondences) and is defined as follows:

Ds(t) =

{
0 (d(∥s∥) > ∥t∥)
κ (otherwise)

, (2)

where d(∥s∥) is a monotonically increasing function, which
gives higher value as ∥s∥ gets larger. For example, we use
d(∥s)∥) = ∥s∥/10 in our experiments. The cost function
allows the difference in the shift vector ∥t∥ to become
larger as distance ∥s∥ between feature points becomes more
distant.

5.2 Motion Interpolation

Using yf
k corresponding to feature point xBk , we interpolate

the shift vectors from rectified background image B to
the rectified f -th input frame for all pixels in the marker
region Ω and the marker’s surrounding region ∂Ω in B,
and deform rectified background image B based on them.
It should be noted here that we need the shift vectors of not
only pixels in Ω but also pixels in ∂Ω because pixels in ∂Ω
in B may be partially occluded by the marker in the f -th
frame.

Specifically, on the basis of the assumption that pixels
move in a similar way to feature points with high degrees
of confidence around them and adjacent pixels’ motions are
highly correlated, we estimate the motion of each pixel in
Ω ∪ ∂Ω in B by minimizing the following energy function.

E =
∑

i∈Ω∪∂Ω

∑
k

ωi,k∥ui − uk∥2 + α
∑

(i,j)∈A

∥ui − uj∥2, (3)

where the summation over k is calculated for all indexes
of feature points, and A is a set of adjacent pixel pairs in
Ω ∪ ∂Ω. ui is the shift vector for pixel i. Shift vector uk for
feature point xBk is given by uk = yf

k − xBk . Weight ωi,k is
calculated on the basis of the distance between feature point
xBk and pixel xBi as well as the confidence C(xBk ) of feature
point xBk as follows:

ωi,k = C(xBk ) exp
(
−∥xBi − xBk ∥2

σ2

)
. (4)

Minimization of E is equivalent to solving a symmetric and
positive-definite linear system obtained by setting its partial
derivatives with respect to the horizontal and vertical com-
ponents of uk to zero. Since the system’s coefficient matrix
is sparse, we can solve it by the conjugate gradient method
for sparse systems, which works efficiently on GPUs (an
example CUDA implementation for the conjugate gradient
method is provided by NVIDIA and the information is
available at [33]).

Finally, we deform the rectified background image B by
projecting each pixel in image B on the basis of the obtained
shift vectors and linearly interpolating pixel values. Our
implementation uses texture mapping provided in OpenGL.

6 INTENSITY ADJUSTMENT

The intensity of texture usually varies between the rectified
background image B and the input frames because of
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Fig. 7. AR marker used in experiments.

illumination change and soft shadows due to a user. Thus,
we adjust the RGB intensities in B for smoothly overlaying
it on the marker region in the input frame. Conventionally,
the intensity change is calculated for a down-sampled image
[6] or for image grids [7] in order to reduce the calculation
cost. However, these methods work well only if each down-
sampled pixel or each grid covers the spatially same area
in the original image throughout all input frames, which
is satisfied only when the background geometry is planar.
Therefore, our method employs pixel-wise Poisson blending
[28] for adjusting intensities. Pixel values in red, green,
and blue channels are independently adjusted. The Poisson
equation used in this blending can be solved with the same
way as the motion interpolation in the previous section.
Therefore, we can again utilize the computational capability
of GPUs.

7 EXPERIMENTS

We carried out experiments to visually remove an AR
marker using a PC with Windows 10, Core i7-990X 3.46 GHz
CPU, 12 GB of memory, and a GeForce GTX Titan GPU. We
used a USB camera (Logicool Qcam Pro 9000) to capture
the real-time input video stream, each of whose frame is
640 × 480 pixels. We used ARToolkit [1] for camera pose
estimation and a square AR marker whose edge length is 80
mm, attached to a relatively thick object whose edge length
is 95 mm and thickness is 7 mm as shown in Fig. 7. Table
1 shows parameter values used in the experiments. In the
following sections, we first compare experimental results
obtained by the propose method with those by baseline
methods to demonstrate the effectiveness of the proposed
method. We then validate each component of the proposed
method, and investigate the influence of parameters. We
finally describe the limitations by showing some examples
and future possibilities.

7.1 Comparison of experimental results
To demonstrate the effectiveness of the proposed method,
we tested our method under various environments as fol-

TABLE 1
Parameters and values used in experiments.

Input image 640×480 pixels
Marker size in a rectified image 80×80 pixels
Marker region Ω 140×140 pixels
Width l of surrounding region ∂Ω 15 pixels
L 15 pixels
Search range G 5×5 pixels
Size of patch 11×11 pixels
κ, α, σ 0.001, 1, 10

lows.

Scene A A curved background geometry with a grid
pattern (Fig. 8).

Scene B A planar background geometry with a stripe
pattern (Fig. 9).

Scene C A curved background geometry with a stripe
pattern (Fig. 10).

Scene D A messy desk with a book, some sheets of pa-
per with figures and texts, and a blank notebook
(Fig. 11).

Scene E An uneven surface on aligned books (Fig. 12).
Scene F An uneven surface of stones (Fig. 13).

To obtain background images, we used our previous ap-
proach [7] for scenes A, B, C, and F, which applies the
method for image inpainting [34] to a rectified image with
a marker. We preliminarily captured a single background
image for scenes D and E.

In the experiments, we compare the results by our
method (d) in Figs. 8-13 with those by the baseline approach,
which just uses a homography matrix to transform the
background image (b). To confirm the effectiveness of the in-
tensity adjustment, we also show the results by our method
without intensity adjustment (c). (a) and (e) show input
frames, and the rectified frames with the feature tracking
results by the proposed method. (f) shows the deformed
images of the rectified background images in the marker
and its surrounding regions. The first row in each figure
shows the result when a camera did not move a lot from
the initial pose. The second and third rows show the results
when the camera moves. We discuss the results for each
scene in detail.

Figure 8 shows experimental results for scene A. We can
see the texture’s appearance changes around the marker in
the rectified image due to camera motion and the curved
geometry as shown in (e). Thus, (b) exhibits large disconti-
nuities in texture around the boundary. In (c), the edges in
the grid pattern are successfully connected on the boundary,
but brightness differs between the hidden and its surround-
ing regions. On the other hand, our method did not yield
geometric and photometric discontinuities in texture. Our
method deformed the background image as shown in (f),
on the basis of the tracking of feature points in the marker’s
surrounding region.

In scene B shown in Fig. 9, appearance changes in the
texture do not seem to be significant from (d) compared
to scene A, but displacement of the texture actually occurs
because of the thickness of the marker base. Thus, we can
see the discontinuous straight lines in (b) without defor-
mation. Noticeable difference in brightness can be observed
without intensity adjustment in (c). Our method did not
produce significant visual artifacts as shown in (d). For such
a stripe pattern as in this scene, our method does not always
make accurate correspondences between the feature points
detected in the rectified background image and pixels in
the input frame because of the aperture problem. Therefore,
these inaccurate correspondences excessively deformed the
background image as shown in (f). However, this defor-
mation compensated for the displacement in the direction
orthogonal to the stripes.
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Fig. 8. Experimental results for scene A with a curved background geometry with a grid pattern.
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Fig. 9. Experimental results for scene B with a planar background geometry with a stripe pattern.

In scene C in Fig. 10, the marker is placed on a curved
geometry that is the same as scene A but with a stripe
pattern as in scene B. As with scene B, our method produced
more plausible texture than those without deformation and
intensity adjustment as shown in (b), (c), and (d). However,
we can also see small distortions in the stripes compared
with the results for scene B in Fig. 9. If the background
geometry is planar, these stripes are straight regardless of

camera poses in the rectified images as in scene B, but
otherwise, they get curved as in the first row of (e), and the
curvature varies according to camera poses as in the second
and third rows. To compensate the difference in curvature,
we may need more dense feature points as well as accurate
correspondences, although for this scene, associating feature
points accurately seems almost infeasible because of the
aperture problem.
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Fig. 10. Experimental results for scene C with a curved background geometry with a stripe pattern.
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Fig. 11. Experimental results for scene D with a messy desk with a book, some sheets of paper with figures and texts, and a blank notebook.

In scene D (Fig. 11), the marker is placed on a book, a
blank notebook, and sheets of paper containing figures and
texts on a desk. Due to partially overlapping these items, the
surface is slightly uneven. As seen in (e), feature points were
distributed almost uniformly on textured regions, edges,
and texture-less regions. In (b), discontinuities in the texture
became significant as the camera moved away from the
initial position. On the other hand, although feature point

tracking in texture-less regions is extremely difficult, our
proposed method’s result still looks plausible because the
proposed method uses the confidence of each feature point
to deform the background image.

In scene E shown in Fig. 12, the marker is placed on
aligned books where there are slight misalignments be-
tween books. In addition, we changed illumination color
continuously while the camera moved for this scene. In
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Fig. 12. Experimental results for scene E with an uneven surface on aligned books.
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Fig. 13. Experimental results for scene F with an even surface of stones.

(b), discontinuities in texture occur as with other scenes. In
(c), the geometric discontinuities were compensated but the
differences in colors are more noticeable than other scenes
when we did not adjust intensities. In the results in (d),
the geometric and photometric discontinuities were suc-
cessfully compensated by the proposed method. However,
we also confirmed one problem of the proposed method
that the inconsistency of image quality occurs between the

generated image on the marker and its surrounding when
the input image blurs due to the camera motion because the
generated image does not blur even if the input image blurs.

In scene F shown in Fig. 13, the marker is placed on
stones with various shapes and sizes. Since the background
has random texture patterns, the overlaid texture on the
marker is harmonious with its surrounding at the first
glance even in (b) when we see the marker-removed scene
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Fig. 14. Experimental results for scenes D and E for validating each component.

frame by frame. However, when we see the scene as a video
stream, we can perceive it as if a stone-textured plane is
floating. In the results by the proposed method, we can see
that the background stones exist on the same surface as the
surrounding one as shown in (d).

The numbers of detected feature points for scenes A, B,
C, D, E, and F were 37, 41, 41, 36, 37, and 38, respectively.
The frame rates for the scenes were 5.2 fps, 5.2 fps, 5.1 fps,
5.1 fps, 5.0 fps, and 5.1 fps, respectively.

7.2 Validity of each component of our method

This section validates each component of our method, i.e.,
feature tracking and motion interpolation (texture deforma-
tion). Specifically, we evaluated scenes D and E under the
combinations of following two types of variations.

• Feature points are tracked sequentially using Eq. (1)
(the proposed method) or independently using only
NCC.

• The confidence C(xBk ) is used in Eq. (4) for motion
interpolation (our method) or not (i.e., all feature
points equally influence the deformation).

Figure 14 shows close-ups of the results and tracked
features for both cases where feature points are sequentially
or independently tracked. In order to clearly show the
deformation, in these figures, we did not apply intensity
adjustment. In the case of independent tracking without
confidence for scene D, feature points in texture-less re-
gions moved in different directions. As a result, the texture
was excessively distorted. The confidence alleviated the
distortion, but there are still texture discontinuities on the
boundary. In the case of sequential feature tracking by our
proposed method, the texture was distorted a little bit when

the confidence was not used, because feature point tracking
was still a little inaccurate in the texture-less regions. The
confidence was able to compensate for the influence of such
inaccurate feature points on deformation.

In scene E, our method’s tracking and independent
tracking made different tracking results for the feature point
marked in yellow in Fig. 14, which is on the edge of
two book spines, because of the aperture problem. In the
case of independent tracking, this feature point made the
letters on the spine too stretched. The use of confidence
alleviated the artifact because the confidence of this feature
point was lower than those of other feature points on the
corners around it. In the case of our method’s tracking, the
results with/without the confidence are plausible because
the tracking of the feature point on the edge were accurate.
Note that the stretched letters on the book spine are not
behind the marker as seen in the bottom row of Fig. 14;
however, they are in region Ω, which is a region slightly
larger than the actual marker region to handle occlusion due
to the thick marker.

These results successfully demonstrated that sequen-
tially tracking feature points in descending order of the
confidence using Eq. (1) and using the confidence C(xBk )
for motion interpolation (texture deformation) are effective
especially when feature points on texture-less and edge
regions are close to those on corners, since feature points
on corners can be accurately tracked and their motion can
be propagated to their surrounding regions.

7.3 Influence of parameters

In this section, we investigate the influence of parameters
α and σ in Eqs. (3) and (4) for motion interpolation using
the frame shown in the third row in Fig. 8 in Scene A.
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Fig. 15. Experimental results with different α.
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Fig. 16. Experimental results with different σ.

Figures 15 and 16 show close-ups of results before intensity
adjustment (top) and their corresponding deformations of
rectified background images with different α and σ (bot-
tom), respectively.

For small α, pixels only around the feature points
moved, and those near the center of the marker did not
at all. This is because, the energy with small α is hardly
affected by different motion in adjacent pixels. As a result,
the texture between the center and the boundary of Ω was
distorted. For too large α, all pixels coherently moved since
different motion in adjacent pixels is severely penalized.
This resulted in discontinuity around the edge. For α be-
tween 0.1 and 10, we did not observe big difference in the
results. These results confirm that results are not sensitive to
small changes in α.

For smaller σ, the motion of feature points tends to give
less influence on pixels far from them. As a result, we found
small discontinuities on the boundary for σ = 1. When σ is
too large, the motion of feature points gives influence even
on pixels quite far from them. In such a case, pixels near the
center of Ω are influenced by feature points far from them.
As a result, texture near the center is severely distorted if the
motions of feature points at a side are quite different from
those at other sides as shown in the results for σ = 50 and
100. The results for σ = 5 and 20 did not make a noticeable
difference; therefore, our method is not sensitive to small
changes in σ.

7.4 Limitations and future possibilities
7.4.1 Background geometry
Figure 17 shows experimental results for a scene with a
step background geometry. In this scene, the vertical plane

becomes invisible in the input frame depending on the
camera pose as shown in the input image at the second
row in the figure. Even in such a case, the vertical plane
still remains on the marker region though other regions in
the result were improved by the proposed method as in
(b) and (c). Figure 18 shows experimental results for a scene
that consists of two textured planes that are orthogonal each
other. In the results by the proposed method, edges between
planes were not completely corrected as shown in (c). Since
the proposed motion interpolation method assumes smooth
motion, the proposed method cannot handle such discon-
tinuity in shift vectors. This results in visual artifacts as
shown in the results of Figs. 17 and 18.

To alleviate this problem, we need to develop texture
deformation that can handle non-smooth geometry but still
works in real time. Spatially varying weight α in Eq. (3) for
encouraging adjacent pixels to move in a similar direction
is a possible approach. Since roughly estimating the back-
ground geometry using dense SLAM, such as DTAM [3],
only adds a relatively small burden on the users and short
computational time, the combination of texture deformation
and rough background geometry may also enhance the
capability for dealing with a variety of background geome-
tries for which our current implementation fails without
excessively spoiling the advantage of our method.

7.4.2 Feature tracking

Since our algorithm for feature point detection and tracking
cannot find the correct corresponding points in the input
frame once they lost, which sometimes occurs because of
rapid camera motion, the tracking failure results in defor-
mation based on inaccurate correspondences.
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Fig. 17. Experimental results for a scene with occlusion.
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Fig. 18. Experimental results for a scene with non-smooth change in
background geometry.

A possible solution to this problem is to consider the
relationship between camera poses and the degrees of de-
formation. For example, if we can store the deformation
parameters given a camera pose when the background
image is accurately deformed with correct correspondences,
we can use them for recovering tracking failure.

7.4.3 Computational cost
As described in the previous section, the frame rate of our
proposed method is still lower than a standard video rate.
For applications that run on light-weight portable devices,
we should reduce the computational cost.

One possible solution is to use the stored deformation
parameters described above not only for tracking recovery
but also for computational cost reduction. Since they can
give good initial parameters for minimizing the energy
function in Eq. (3), the frame rate may improve as the
number of the stored deformation parameters increases.
Another solution is to reduce the number of parameters in
Eq. (3). Instead of using all pixels in Ω∪∂Ω as parameters for
our energy minimization, adaptively sampling some pixels
depending on texture complexity in the background image
may reduce the computational cost while preserving the
quality of deformation.

8 CONCLUSION

This paper has proposed an AR marker hiding method
based on deformation of a background image. Our modified

feature point detection and proposed tracking algorithm
gives feature points that are desirable for motion interpola-
tion. We achieved fast pixel-wise deformation by designing
an energy function that can be efficiently minimized using
GPUs.

In the experiments, we have confirmed that our texture
deformation-based AR marker hiding method can generate
continuous textures on the marker region even for a thick
AR marker and for nonplanar background geometry. It
should be noted that we have also obtained good results
for the scene with a stripe pattern, which causes the aper-
ture problem when tracking feature points. However, our
method could not deal with scenes in which occlusions
occur according to the camera motion and non-smooth ge-
ometry change exists because we assume that the motions of
adjacent pixels are similar. Future work includes to establish
AR marker hiding for a variety of background geometries
at a higher frame rate. In addition, we will apply texture
deformation to diminished reality which visually removes
various objects from a real-time video stream.
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