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Abstract: Non-photorealistic rendering (NPR) creates images with artistic styles of paintings. In this field, a number
of methods of converting photographed images into non-photorealistic ones have been developed, and can be catego-
rized into filter-based and exemplar-based approaches. In this paper, we focus on the exemplar-based approach and
propose a novel method which transfers a style of a reference pictorial image to a photographed image. Specifically,
we first input a pair of target and reference images. The target image is converted by minimizing an energy function
which is defined based on the difference in intensities between an output image and a target image, and the pattern
dissimilarity between an output image and a reference image. The proposed method transfers structures and colors
of textures in the reference image and generates continuous textures by minimizing the energy function. In experi-
ments, we demonstrate the effectiveness of the proposed method using a variety of images and examine the influence
of parameter changes and intensity adjustment for pre-processing on resultant images.

Keywords: texture transfer, non-photorealistic rendering, painterly rendering, exemplar-based rendering, energy min-
imization

1. Introduction

Non-photorealistic rendering (NPR), which creates images
with artistic styles of paintings such as oil paintings and pencil
drawing, has been investigated in the field of computer graph-
ics. Such rendering approaches enable various expressions ac-
cording to the preference and sensibility of creators even if the
target scene is the same. In this field, a number of methods for
converting photographed images to non-photorealistic styles have
been developed [16], and can be categorized into filter-based and
exemplar-based approaches.

Many of the filter-based methods focus on strokes and convert
sets of pixel values to various strokes by imitating actual paintings
composed of multiple strokes. A number of filter-based methods
have been proposed so far [10], [11], [12], [15], [22]. For exam-
ple, Haeberli [10] proposed a method which selectively converts
a part in a target image into a painterly style until the entire image
is converted. In this method, users manually select a direction and
a size of a brush, and the color of the brush is automatically de-
termined according to the intensities of the target image. In [10],
a method that automatically determines the positions and direc-
tions of strokes using intensity gradients is also proposed. Hertz-
mann [11] proposed a method that draws strokes based on an ac-
tual drawing manner that first draws a rough sketch with a large
brush and then draws details with smaller brushes. Among rela-
tively recent works, Zeng et al. [22] proposed a semantics-driven
method. This method first parses a target image using methods
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in Refs. [9], [19], [20] and represents the image by multiple lay-
ers. The method then generates strokes in each layer considering
an orientation field obtained by anisotropic diffusion and object
categories. Such filter-based methods can generate various ex-
pressions of paintings by adjusting parameters for strokes. How-
ever, available painting styles are limited according to methods.
In addition, much knowledge and many experiences of users are
required to obtain their desired results.

There have also been a number of exemplar-based methods
that transfer painterly styles in reference images to target im-
ages [2], [8], [13], [17], [18], [21]. These methods just require
users to input reference images with their favorite styles and
can convert target images more easily than filter-based methods.
However, most of the conventional methods evaluate the local
similarity and copy pixel values of the most similar patches in
the reference image to the target image, and the process is iter-
ated from the region with already determined pixel values to that
with pixel values to be determined by raster scan. Such succes-
sive copy often does not preserve the spatial coherence for the
entire image. For example, in the case where the reference im-
age does not contain appropriate patches for some local area in
the target image, once an implausible patch is copied there in the
target image in a step during the raster scan, implausible textures
tend to be continuously copied in subsequent steps. Although the
methods iterate the raster scan to try to obtain more natural im-
ages, the number of iterations is very heuristic because there is
no criterion to represent the plausibility for the entire image. In
addition, while some methods only transfer the structures of tex-
tures, users often desire the transfer of both structures and colors
of textures.
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For these issues, this paper focuses on an exemplar-based ap-
proach, and proposes a method to transfer structures and colors
of textures in an energy minimization framework. The contri-
bution of this paper is optimally determining all pixel values by
minimizing an energy function that evaluates the plausibility for
the entire image based on both the relationship between output
and target images and the relationship between output and refer-
ence images, rather than evaluating the similarity only for local
regions and successively determining pixel values. The proposed
approach transfers both structures and colors in the reference im-
age to the target image with fewer texture disconnections than the
successively copy approach while preserving the characteristics
of the target image.

The rest of this paper is organized as follows. The next section
reviews related work. Section 3 describes the proposed method.
Section 4 shows three kinds of experiments. Finally we conclude
this paper in Section 5.

2. Related Work

This section reviews exemplar-based texture transfer meth-
ods. Hetzmann et al. [13] proposed a texture transfer method that
refers a pair of a photo and its converted image with a painterly
style. Tang et al. [18] improved the method with respect to the
computational cost by employing CUDA. These methods convert
a target image by learning the relationship between the photo and
its converted image. These methods also work with color trans-
fer methods such as the method in Ref. [5]. In Ref. [5], a target
image is converted so that the image has colors that are used in
a reference image. In the method, colors in target and reference
images are classified into 11 basic ones according to the Basic
Color Terms (BCTs) [4]. Within each category, colors in the tar-
get image are transformed to ones used in the reference image.
Although the combination of Refs. [13], [18], and [5] transfers
both textures and colors, users have to prepare a pair of a photo
and its converted image according to their preference.

For this problem, texture transfer methods that need only a
single reference image in addition to a target image have been
proposed [2], [8], [17], [21]. Efros et al. [8] proposed a texture
synthesis method and applied it to texture transfer. The method
firstly copies similar texture patches in a reference image to a tar-
get image successively while overlapping the partial regions of
the patches. In the overlapping regions, the optimal boundaries
between the patches are calculated using the method in Ref. [7]
to achieve the natural connection of textures. Ashikhmin [2] pro-
posed a texture transfer method by extending his texture synthesis
method [1], which successively determines pixel values by raster
scan. During the raster scan, the correspondences of pixels that
were already made in the raster scan are used for determining the
pixel in a reference image corresponding to a target pixel in a
target image for texture coherence and speeding up of synthesis.

Wang et al. [21] and Lee et al. [17] have focused on directions
of strokes, which are important characteristics in artistic paint-
ings and are not considered in the methods in Refs. [2], [8], [13].
The method in Ref. [21] segments a target image and creates a
direction field based on a medial axis of each region. Users then
manually cut out patches from a reference image and they are

used for converting the target image. Lee et al. [17] proposed
an automatic transfer method, which is a method extended from
Ref. [2], considering directions of strokes. The method creates a
smooth direction field using the method in Ref. [14], which pre-
serves edge directions smoothly around important features. The
transferred image is then generated in a similar way to Ref. [2].
The methods in Refs. [17], [21] mainly transfer structures of tex-
tures and do not consider color changes of target images.

In summary, it should be noted that existing exemplar-based
texture transfer methods basically successively transfer partial
textures. Therefore, the order of transfer largely affects results. In
addition, the method often does not preserve the spatial coherence
for the entire image. On the other hand, the proposed method op-
timally determines the intensity of each pixel independently in an
energy minimization framework, resulting in generating continu-
ous textures in any part in the output image.

3. Texture Transfer by Energy Minimization

Figure 1 shows the overview of the proposed method. The
proposed method converts target image T into output image O

considering both the relationship between output and target im-
ages for preserving the structure of textures in target image T and
the relationship between output and reference images for reflect-
ing the characteristics of textures and colors in reference image R

to output image O. Note that the resolution of output image O is
the same as that of target image T but is not necessarily the same
as that of reference image R.

In the following, Section 3.1 defines an energy function, Sec-
tion 3.2 explains a method for minimizing the energy, and Sec-
tion 3.3 describes a coarse-to-fine framework for energy mini-
mization.

3.1 Definition of Energy Function
We define an energy function E based on the weighted sum of

S S DOT (Sum of squared differences between intensities in out-
put image O and target image T ) for preserving the structure of
textures in target image T and S S S DOR (Sum of SSD between
patches in output image O and reference image R) for reflecting
the characteristics of textures and colors in reference image R as
follows:

E = S S DOT + αS S S DOR, (1)

Fig. 1 Overview of the proposed method.
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Fig. 2 Illustration of pairs of similar patches.

where α is a weight for controlling how much textures in the ref-
erence image are reflected to the output image. S S DOT is defined
based on the difference in values of all pixels in output image O

and target image T as follows:

S S DOT =
∑
xi∈O
||IO(xi) − IT (xi)||2, (2)

where IO(xi) and IT (xi) are vector representations of RGB values
at pixel position xi of pixel i in the output image O and target im-
age T , respectively. This term preserves the structure of the target
image from largely changing.

S S S DOR totalizes SSD values for all the pairs of patches cen-
tered at all the pixels in output image O and some patches in ref-
erence image R and is defined as follows:

S S S DOR =
∑
xi∈O

∑
p∈W
||IO(xi + p) − IR(x j + p)||2, (3)

where IR(x j +p) is a vector representation of RGB values at pixel
position x j+p in a reference image R. Pixel j is an arbitrary pixel
in reference image R, but automatically determined when the en-
ergy function is minimized. p is a shift vector to indicate a pixel
in a square patch W. Here, if xi + p is out of the image region,
the calculation is skipped. If x j satisfies the condition that x j + p
(∃p ∈ W) is out of the image region, such pixel j is excluded
from the candidate list for corresponding pixels in R in advance.

It should be noted here that since the neighboring patches in
O overlap each other and the energy minimization described in
Section 3.2 makes a patch centered at an arbitrary pixel in output
image O similar to some patch in reference image R as shown in
Fig. 2, continuous textures are usually generated at an arbitrary
part in output image O in spite of not explicitly considering the
spatial coherence of textures between adjacent patches.

3.2 Energy Minimization
Energy function E in Eq. (1) is iteratively minimized by a

framework of greedy algorithm to find a good local minimum.
Here, after initializing pixel values in output image O and pix-
els j corresponding to ∀i(∈ O) in Eq. (1) (how to initialize them
is described in detail in Section 3.3), energy function E is mini-
mized by iterating the following two processes until a condition
for energy convergence is satisfied: (i) searching the reference
image for similar texture patches to determine j in Eq. (3) and (ii)
updating pixel values IO in the output image.

The process (i) basically searches the reference image for such
central position of the patch that satisfies the following equation
with respect to each pixel xi in output image O while all the pixel
values in output image O fixed.

Fig. 3 Pixel relationship to calculate pixel value IO(xi).

f(xi) = arg min
x j∈R

∑
p∈W
||IO(xi + p) − IR(x j + p)||2. (4)

Here, since it takes much time if we exhaustively search for the
most similar patch, we employ PatchMatch [3], which limits the
range of search for similar patches, to speed up the searching pro-
cess by following the state-of-the-art methods in the field of tex-
ture synthesis such as Ref. [6].

The process (ii) updates each pixel value vector IO(xi) of output
image O independently so that energy E can be minimized while
keeping all the pairs of similar patches between output image O

and reference image R determined by process (i) fixed. In the
following, we describe a method to determine pixel value IO(xi).

Here, E can be resolved into each partial energy Exi , which
contains only pixel value vector IO(xi) for pixel i as a parameter.
As illustrated in Fig. 3, pixel positions related to xi in the output
image are xi in the target image and f(xi + p) − p in the reference
image, and the partial energy can be represented as follows:

Exi = ||IO(xi)−IT (xi)||2+α
∑
p∈W
||IO(xi)−IR(f(xi+p)−p)||2, (5)

where the relationship between the total energy E and each partial
energy Exi is represented as follow:

E =
∑
xi∈O

Exi . (6)

Since each partial energy Exi is independent with respect to each
pixel value in output image O, we can minimize energy E by min-
imizing each partial energy Exi independently. Pixel value IO(xi)
that minimizes partial energy Exi can be calculated by differenti-
ating Exi and finding an extremal value as follows.

IO(xi) =
IT (xi) + α

∑
p∈W IR(f(xi + p) − p)

1 + αNW
, (7)

where NW is the number of pixels in patch W.

3.3 Coarse-to-fine Approach
Resultant images generated by the proposed method largely

depend on the patch size. If the patch size is fixed through the
entire process, only textures with a specific scale are reflected on
resultant images. For this problem, we employ a coarse-to-fine
approach, which generates image pyramids and iterates energy
minimization while changing the resolution of the target, refer-
ence, and output images. This approach can also avoid bad local
minima and reduce computational cost as well as reflect textures
with different sizes on resultant images.

Specifically, we first generate image pyramids with M levels,
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Fig. 4 Initialization of pixel correspondences.

Algorithm 1 Proposed method
1: Input: T , R, O

2: Generate image pyramids with M levels consisting of Tk , Rk and Ok

(k = 0, 1, . . . ,M − 1)

3: for k = M − 1 to 0 do

4: if k = M − 1 then

5: Copy Tk to Ok

6: Initialize f(xi) for ∀i in a random manner

7: else

8: Initialize f(xi) for ∀i using correspondences for the k + 1-th level

9: Ok is initialized by Eq. (7)

10: end if

11: while a condition for energy convergence is not satisfied do

12: for ∀i ∈ Ok do

13: Find f(xi) that satisfies Eq. (4) using PatchMatch

14: end for

15: for ∀i ∈ Ok do

16: Update pixel value IOk (xi) by Eq. (7)

17: end for

18: end while

19: end for

20: Output: O(= O0)

which contain images whose width and height are recursively re-
duced by half. Here, we represent the k-th level images of the tar-
get, reference, and output images as Tk, Rk, and Ok, respectively.
The width and height of k-the level image are 1/2k of those of the
original image. We then iterate energy minimization from M − 1-
th level to 0-th level layers successively using a certain size of
patch. In the M − 1-th level, pixel values in output image OM−1

are initialized by copying target image TM−1 to OM−1, and initial
pixel positions f(xi) = x j corresponding xi are determined in a
random manner by following PatchMatch algorithm [3]. In the
other levels k, initial values of Ok are determined by Eq. (7) after
initializing pixel positions f(xi) = x j corresponding xi. Here, as
shown in Fig. 4, since pixel (u, v) in Ok+1 is the combination of
four pixels (2u, 2v), (2u + 1, 2v), (2u, 2v + 1), and (2u + 1, 2v + 1)
in Ok, given that (û, v̂) in Rk+1 is corresponding to (u, v) in Ok+1,
we set initial pixels corresponding to the four pixels as (2û, 2v̂),
(2û + 1, 2v̂), (2û, 2v̂ + 1), and (2û + 1, 2v̂ + 1), respectively.

Finally, we summarize the specific procedure of the proposed
method in Algorithm 1.

4. Experiments

We conducted experiments using four photographs as target
images and four paintings with various characteristics as refer-
ence images (Fig. 5) with a standard PC (Core i7-3930K 3.2 GHz
CPU and 16 GB memory). The resolutions of target and reference

Fig. 5 Target (T1 to T4) and reference (R1 to R4) images.

images were resized so that the short sides become 300 pixels for
experiments to unify the scales of textures in target and reference
images. The characteristics of the target images (T1 to T4) and
reference images (R1 to R4) are as follows:
T1 Landscape with detailed textures of buildings in one area

and nature.
T2 City landscape with many detailed textures of buildings and

cloud texture.
T3 Flower meadow.
T4 Winter mountain with little texture and low contrast.
R1 Landscape with small buildings and nature with long strokes

and a small number of colors.
R2 Photorealistic countryside landscape.
R3 Landscape with some buildings and nature with dark colors.
R4 Landscape with nature with clear brush strokes with natural

colors.
For the coarse-to-fine approach, we generated four-layer image
pyramids (M = 4). We considered the energy to be converged
when the ratio of energy decrease is less than 0.3% per layer.

In the experiments, we first examine the effectiveness of the
proposed method and the influence of parameters on resultant
images. We then examine transfered results with and without
intensity adjustments in pre-processing for energy minimization
because intensity adjustments may be effective in the proposed
framework especially when the distribution of intensities between
target and reference images are largely different.
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Fig. 6 Results with different parameters for target image T1 and reference
image R1.

In the following, Section 4.1 describes experiments with dif-
ferent patch sizes and weights without intensity adjustment and
Section 4.2 describes experiments with intensity adjustment. Sec-
tion 4.3 compares experimental results obtained by the proposed
and conventional methods using the target and reference images
in paper [17].

4.1 Experiments with Different Parameters
This section discusses experimental results obtained while

changing patch sizes and weights for balancing two cost terms.
Specifically, we employed 3×3 and 5×5 pixels as patch size and
0.2, 0.5, and 0.8 as weight α. In this paper, we show converted
images and processing times for some combinations of target and
reference images as shown in Figs. 6 to 16. In the following, we
first discuss individual results and then describe the overall ten-
dency with different parameters and various combinations of tar-
get and reference images.

Figures 6 to 9 show results for target image T1, which has de-
tailed texture in one part and a high color contrast for the entire
image. From the results, we confirmed that the target image was
surely converted to painterly style, reflecting the characteristics
of textures in the reference images, but the amount of reflectance
largely depended on the parameter values. For example, when
W = 3 × 3 and α = 0.2, the conversion was slight but the color
of the reference images were surely reflected. When W = 3 × 3
and α = 0.5, the strokes in the reference images were also re-
flected. However, as for reference images R1 and R4, which have
clear strokes, the reflectance of strokes is insufficient as shown in
Figs. 6 and 9. When W = 5 × 5, the long strokes and relatively
large textures were reflected to the results; however, as a side ef-
fect, some detailed textures such as buildings got lost as weight α
became larger. For the combination of T1 and R1 with W = 3× 3

Fig. 7 Results with different parameters for target image T1 and reference
image R2.

Fig. 8 Results with different parameters for target image T1 and reference
image R3.

and α = 0.5, we show the relationship between the normalized
energy and the number of iterations in Fig. 10. From the graph,
we confirmed that the energy is steadily reduced by each iteration.

Figures 11 and 12 show results for target image T2, which
has detailed textures of buildings and cloud textures. Since the
reference images do not contain textures corresponding to build-
ings in the target image, the detailed textures of buildings became
destroyed as the patch size and the weight got larger. However,
when W = 3 × 3 and α = 0.5, the reflectance of the strokes in the
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Fig. 9 Results with different parameters for target image T1 and reference
image R4.

Fig. 10 Relationship between energy and number of iterations.

reference images is slight but actually noticeable while keeping
the rough structure of textures in the target image.

Figures 13 and 14 show results for target image T3, which has
detailed textures of flowers and grass. From the results, we can
see that the color tones of reference images are well reflected to
the target image, respectively. When W = 3 × 3 and α = 0.8
in Fig. 14, the strokes of the reference image are also surely re-
flected. However, we also confirmed that the detailed texture of
grass became lost when W = 5 × 5.

Figures 15 and 16 show results for target image T4, which has
little texture and low contrast because of snowy scene. From the
results, we can confirm that the structure of textures in the target
image is not preserved when the patch size and the weight be-
come even slightly large. Since the contrast of the target image
is low and the image contains similar texture patterns throughout
the entire region, some texture patterns in the reference images
are intensively used as exemplars. As a result, the conversion lost
detailed structure in the target image.

As for the overall tendency with respect to patch size and
weight α, as the patch size and weight α become larger, the stroke
in a reference image gets reflected more, but the details of texture
in a target image get lost. Considering an ideal conversion that

Fig. 11 Results with different parameters for target image T2 and reference
image R1.

Fig. 12 Results with different parameters for target image T2 and reference
image R4.

preserves the structure of textures in target images and reflects
the paintings style of reference images as much as possible, it
may be good to employ a large patch size for regions with little
and homogeneous texture in target images such as sky, sea and
mountains for reflecting the strokes in reference images and em-
ploy a small patch size for regions with detailed textures in target
images such as buildings for preserving the structure of textures.
To achieve this, we should consider a framework to adaptively
change patch sizes according to the characteristics of textures in
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Fig. 13 Results with different parameters for target image T3 and reference
image R2.

Fig. 14 Results with different parameters for target image T3 and reference
image R4.

target images in future work. Currently, although the quality of
the results depend on the patch size and weight, we could ob-
tain averagely good results with 3 × 3 pixels patch and α = 0.5.
Therefore, we employ these values for the next experiments with
intensity adjustment.

As the processing time for each conversion is shown in each
figure, we confirmed that the processing time becomes shorter as
weight α becomes larger. This is because larger weights speed
up the convergence of energy. We also confirmed that the time is

Fig. 15 Results with different parameters for target image T4 and reference
image R3.

Fig. 16 Results with different parameters for target image T4 and reference
image R4.

sufficiently short for practical use.

4.2 Experiments with Intensity Adjustment
This section discusses experimental results obtained by the

proposed method with intensity adjustment. In this experiment,
we employed 3 × 3 pixels as patch size and 0.5 as weight α as
mentioned above.

For intensity adjustment, we modified the intensities of the tar-
get image so that the histogram of the target image can correspond
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Fig. 17 Intensity adjustment of target image.

to that of the reference image. Specifically, we first convert the
colors of target and reference images from RGB to HSV color
space and sort pixels of target and reference images in ascending
order of their V values, respectively. We then change the V value
of k-th pixel in the target image to that of l-th pixel in the refer-
ence image, as shown in Fig. 17, where the relationship between
k and l is represented as follows:

l =

[
NR

NT
k

]
, (8)

where [·] rounds down a value to an integer, and NT and NR indi-
cate the resolution of images T and R, respectively. Finally, the
color space of the target image is converted from HSV to RGB. In
this experiment, we regarded the intensity-adjusted target image
or the original target image as target image T .

Figures 18 to 21 show target images with intensity adjustment
and converted results for target images T1 to T4 with two refer-
ence images, respectively. In the following, we discuss the re-
sults.

Figure 18 shows the results of target image T1 converted with
reference images R1 and R2. The left images in Fig. 18 were
obtained by intensity adjustment so that the histogram of the tar-
get image becomes almost the same with those of the reference
images. From the results, we confirmed that the results with in-
tensity adjustment were worse than those obtained using the same
parameter W = 3 × 3 and α = 0.5 without intensity adjustment
as shown in Figs. 6 and 7. Since the adjustment enhanced the
contrast of intensities in sky and mountain regions, the high con-
trast caused inappropriate texture correspondences, resulting in
implausible converted images.

Figure 19 shows the results of target image T2 converted with
reference images R1 and R4. When reference image R1 was
used, the target image after intensity adjustment became dark.
As a result, the converted result provides users with an impres-
sion different from the result without intensity adjustment shown
in Fig. 11. When reference image R4 was used, the intensity ad-
justment brightened the entire target image. The converted image
with the brighter target image has low contrast and pale colors.
Since the color tones and strokes in the reference images are re-
flected to the results for both cases when intensity adjustment is
applied or not, the evaluation may depend on the user’s prefer-
ence.

Figure 20 shows the results of target image T3 converted with
reference images R2 and R4. The target image was brightened
when reference images R2 and R4 were used. The strokes in
the reference images were reflected to the converted results than

Fig. 18 Results of T1 with intensity adjustment.

Fig. 19 Results of T2 with intensity adjustment.

Fig. 20 Results of T3 with intensity adjustment.

those without intensity adjustment shown in Figs. 13 and 14;
however, the blurry effects were also generated for both results.

Figure 21 shows the results of target image T4 converted with
reference images R3 and R4. Since target image T4 has low con-
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Fig. 21 Results of T4 with intensity adjustment.

trast, the intensity adjustment enhanced the contrast. As a result,
the color tones and strokes in the reference images R3 and R4 are
well reflected and more natural resultant images were obtained
compared with the results without intensity adjustment shown in
Figs. 15 and 16.

In summary, when the contrast of the target image is low, the
intensity adjustment by making the histogram of target image
comparable to that of the reference image often enhances the con-
trast and tends to reflect the characteristics of textures in a refer-
ence image to the converted result more clearly. In other cases,
the intensity adjustment does not always make converted results
better; however, it may generate additional converted results that
have different strokes and brightness from those obtained by the
proposed method without intensity adjustment. For practical use,
since we cannot know the users’ preferences, a system in which
users can select their desired results by outputting converted re-
sults both with and without intensity adjustment may be useful.

4.3 Comparison
This section compares the results obtained by the proposed

method with those obtained by one of the state-of-the-art meth-
ods [17]. Figure 22 shows a target image and three reference
images, and Fig. 23 shows results by the proposed method and
the method in Ref. [17].

Reference image A is an oil painting with clear strokes and
distinct use of colors. In the resultant image converted by the
proposed method, the reflectance of strokes is slight but actually
confirmable, and the colors of the entire resultant image are surely
influenced by those in the reference image. In particular, the com-
bination of blue and brown strokes appears in the entire resultant
image. On the other hand, in the resultant image obtained by the
conventional method, clear stroke shapes similar to those in the
reference image are generated in the resultant image. However,
the color tones and the combination of blue and brown strokes are
not reflected because the conventional method does not intend to
reflect color tones.

Reference image B is a water painting of fruits that are drawn
on a piece of bumpy paper. In the resultant image converted by

Fig. 22 Target and reference images for comparison.

the proposed method, color tones used in the reference image ap-
pears over the entire image. The bumps on the paper are also
reflected. However, since the proposed method does not have the
effect of preserving edges, the bleeding of black ink can be ob-
served. On the other hand, the bumps also seem to be reflected to
the resultant image by the conventional method, but it may not be
easy to clearly find the effect.

Reference image C is an image with pastel colors. The pro-
posed method reflects the strokes observed in the surface of the
water and the bird to the sky and cloud regions and also reflects
color tones to the entire target image. In the resultant image ob-
tained by the conventional method, it may be difficult to recog-
nize the effect of the reflectance because of the difference in color
tones.

From the overall results, it seems to be easier to recognize the
effect of the proposed method than the conventional method be-
cause the proposed method reflects not only strokes but also color
tones. However, for detailed textures such as the framework of
the tower, the proposed method tends to generate blurrier tex-
tures than the conventional method. The difference is remarkable
especially for the results for Reference A. Since pixel values are
determined by the uniform average of pixel values of patches for
energy minimization, the generated textures tend to blur if the
reference image does not contain the texture whose structure is
quite similar to that in the target image. In addition, the reflec-
tion of textures with large scales is still insufficient. Although
we may reflect textures with large scales if we use larger patches,
large patches often do not preserve the structure of the target im-
age. To overcome these problems, we should consider a method
that automatically determines the position-dependent patch size
according to the fineness of the texture in the target image and
the existence of similar textures in the reference image because
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Fig. 23 Comparison with the method in Ref. [17].

large patches reflect textures with large scales and small patches
preserve the detailed structure of the target image without blurs
even if the reference image contains few similar textures. Con-
sidering the level M of the coarse-to-fine approach also may im-
prove the reflection of textures and the preservation of structures

because starting from larger level M (smaller resolution of the im-
age) with a certain patch size is equivalent to using patches which
have a larger size, and vice versa.

5. Conclusion

This paper has proposed an exemplar-based method that trans-
fers a painterly style in a reference image to a photograph. The
texture transfer is achieved by minimizing an energy function
that consists of two terms: intensity differences between tar-
get and converted (output) images, and pattern dissimilarity be-
tween reference and converted images. In experiments, we ex-
amined the influence of parameters and intensity adjustment on
transfered images. We also compared converted images obtained
by the proposed method with those obtained by a conventional
method. From the results, we confirmed that the proposed method
does not always reflect the strokes sufficiently, but handling both
strokes and color tones is effective to convert a target image into a
painterly style. In future work, we should develop a method that
adaptively adjusts the patch size in energy definition considering
the fineness of textures and the existence of similar textures.
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