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Abstract

Three-dimensional (3-D) models of outdoor scenes are
widely used for object recognition, navigation, mixed re-
ality, and so on. Because such models are often made man-
ually with high costs, automatic and dense 3-D reconstruc-
tion is widely investigated. In related work, a dense 3-D
model is generated by using a stereo method. However,
these methods cannot use several hundreds images together
for dense depth estimation because it is difficult to accu-
rately calibrate a large number of cameras. In this pa-
per, we propose a dense 3-D reconstruction method that
first estimates extrinsic camera parameters of a hand-held
video camera, and then reconstructs a dense 3-D model of
a scene. We can acquire a model of the scene accurately by
using several hundreds input images.

1. Introduction
Three-dimensional (3-D) models of outdoor scenes are
widely used for object recognition, navigation, mixed re-
ality, and so on. Because such models are often made man-
ually with high costs, automatic and dense 3-D reconstruc-
tion is desired. In the field of computer vision, there are
many researches that reconstruct 3-D models from multiple
images [1].

One of the major approaches to 3-D reconstruction is to
use static stereo. However, the methods cannot use a large
number of images because it is difficult to calibrate a large
number of cameras accurately. Therefore, these methods
become sensitive to noise. Although many researchers often
use a constraint of surface continuity to reduce noises, such
an approach limits a target scene and may sometimes reduce
accuracy of reconstruction.

One of other approaches is to use an image sequence.
The methods that use an image sequence can automatically
estimate camera parameters and 3-D positions of natural
features by tracking features in captured images. Factor-
ization algorithm [2] is one of the well known methods that
can estimate a rough 3-D scene stably and efficiently from
an image sequence by assuming an affine camera model.

However, when the underlying scene is not suitable for the
affine camera model, estimated camera parameters are not
reliable. Therefore, this method is not suitable for recon-
structing a dense 3-D model by stereo method. Although
there exists another reconstruction method [3] that estimates
camera parameters and a dense 3-D model from an image
sequence, the method uses only a small number of images.
Additionally, it seems to be difficult to reconstruct a com-
plex outdoor scene because it uses the constraint of surface
continuity in dense depth estimation.

In order to reconstruct an outdoor scene densely and sta-
bly, we propose a new 3-D reconstruction method that first
estimates extrinsic camera parameters of an input image se-
quence, and then reconstructs a dense model of a scene.
In the first process, we use a camera parameter estimation
method [4] that is based on tracking both markers and natu-
ral features. Next, dense depth maps are computed by using
a multi-baseline stereo method from hundreds images. Fi-
nally, depth maps are combined together in a voxel space.
The proposed method can reconstruct a complex outdoor
scene densely and accurately by combining several hun-
dreds images of a long sequence without the constraint of
surface continuity.

This paper is structured as follows. Section 2 describes
a method of estimating camera parameters of a hand-held
video camera by tracking markers and natural features. In
Section 3, we describe a method of dense depth estimation
and integration of these dense data in a voxel space. Then,
we demonstrate experimental results of 3-D reconstruction
from real image sequences to show the feasibility of the
proposed method in Section 4. Finally, Section 5 describes
conclusion and future work.

2. Camera parameter estimation by
tracking features

This section describes an extrinsic camera parameter esti-
mation method which is based on tracking features (mark-
ers and natural features). Figure 1 shows the flow diagram
of our algorithm. First, we must specify the positions of six
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(a) marker and natural feature tracking

(b) extrinsic camera parameter estimation

(c) 3-D position estimation of natural features

(e) adding and deleting natural features

(B) error minimization in the whole input

marker specification at the first frame

(A) initial camera parameter estimation

(d) computing confidence of features

Figure 1: Flow diagram of camera parameter estimation.

or more markers in the first frame of input sequence to es-
timate extrinsic camera parameters in the first frame. Then
initial extrinsic camera parameters in all the frames are de-
termined by iterating the processes at each frame (A). How-
ever, the accumulation of estimation error exists. There-
fore, extrinsic camera parameters are refined by minimiz-
ing the accumulation of estimation errors over the whole
input (B). Using this approach, we can estimate extrinsic
camera parameters efficiently and accurately with automati-
cally adding and deleting features regardless of the visibility
of initial markers. It should be noted that intrinsic camera
parameters must be estimated in advance.

2.1 Initial camera parameter estimation
By iterating the following processes from the first frame to
the last frame, initial extrinsic camera parameters and 3-D
positions of natural features are determined.

(a) Marker and natural feature tracking Markers are
tracked by using color and shape information. Natural fea-
tures are tracked using a robust estimation approach by pro-
jecting the 3-D positions of natural features that are esti-
mated until the previous frame. Harris’s interest operator is
used for robust tracking of natural features.

(b) Extrinsic camera parameter estimation In this
method, the re-projection error ��� � ���� � �����

� is used
as a measure for estimation error, where ��� is the tracked
2-D position of feature � and ���� is the re-projected posi-
tion of estimated 3-D position �� of feature � onto the im-
age at the �-th frame using camera parameter �� . Then
camera parameter �� at the �-th frame is estimated by
minimizing the estimation error �� defined as follows:

�� �
�
�

������� (1)

where ��� is a weighting coefficient for the feature � at the
�-th frame and is computed by considering the confidence
of the feature.

(c) 3-D Position estimation of natural features The posi-
tion �� of the natural feature � in real world is estimated
from ��� and �� that have already been determined. The
position �� is computed by minimizing a sum of squared
distances between�� and straight lines that connect the cen-
ter of projection in the �-th frame and the position � ��.

(c) 3-D Position estimation of natural features The posi-
tion �� of the natural feature � in real world is estimated
from ��� and �� that have already been determined. The
position �� is computed by minimizing a sum of squared
distances between�� and straight lines that connect the cen-
ter of projection in the �-th frame and the position � �� of
feature �.

(d) Computing confidence of features We assume that
the distribution of tracking error can be approximated by
a Gaussian probability density function. Then the confi-
dence of feature, ���, is defined by the inverse of variance
of re-projection error ��� in the frames where feature � has
already been tracked.

(e) Adding and deleting natural features Feature candi-
dates that satisfy all the following conditions are added to
the set of natural features at every frame.

� The confidence is over a given threshold.
� The matching error is less than a given threshold.
� The output value of Harris’s operator is more than a

given threshold.
� The maximum angle between lines that connect the

center of projection and estimated 3-D position of the
feature candidate is more than a given threshold.

On the other hand, natural features that satisfy at least one
of the following conditions are deleted at every frame.

� The confidence is under a given threshold.
� The matching error is more than a given threshold.

2.2 Optimization in the whole input

In the final step, the accumulation of estimation error is
minimized over the whole input. The accumulated estima-
tion error is given by the sum of re-projection errors as in
Eq.(2) and is minimized with respect to the camera param-
eter�� and natural feature position ��.

� �
�
�

�
�

������ � �����
�� (2)

The camera parameters and feature positions that have al-
ready been estimated by earlier process for each frame are
used for initial values in the minimization. �� is a weight-
ing coefficient for the feature � in the final frame of the im-
age sequence.

2



3. Dense 3-D reconstruction of scene
In this section, we describe a dense 3-D reconstruction
method using camera parameters estimated by the method
described in Section 2. First, a dense depth map for each
image is computed by using a multi-baseline stereo method,
then a dense 3-D model is reconstructed by combining ob-
tained dense depth maps in a voxel space.

3.1. Depth mapping by multi-baseline stereo
A depth map is computed for each frame by using a multi-
baseline stereo technique [5]. Depth value � of pixel �	� 
�
at the �-th frame is estimated by using the images from the
�� � ��-th frame to the �� � ��-th frame. In the follow-
ing expression, we assume the focal length as 1 for sim-
plicity. Then, the 3-D position of the pixel �	� 
� can be
expressed by �	�� 
�� ��, and we can define the projected
position � �	�� �
�� of the 3-D position �	�� 
�� �� onto the �-
th frame as follows:

�
���

 �	�
 �
�

1

�
��� ����

��
�

�
���

	�

�
�
1

�
��� � (3)

where  is a parameter. In the multi-baseline method, SSD
(Sum of Squared Differences) is employed as an error func-
tion, that is computed as the sum of squared differences be-
tween the window � in the �-th frame centered at �	� 
�
and that in the �-th frame centered at � �	�� �
��. We de-
fine the SSD function in Eq.(4) using RGB components
(��� � ��� � ��� ).

����� �	� 
� ��� �	� ��

�����������

�
�����	��� 
������� � �	���� �
������

� �����	� �� 
 � �� � ���� �	� � �� �
� � ����

� �����	� �� 
 � �� � ���� �	� � �� �
� � ����
	
� (4)

where �� and �	 are offsets of the window � for 	 and

 axes, respectively. We define a modified SSSD (Sum of
SSD) in Eq.(5) using the median of SSD because the tem-
plate of window � in the �-th frame may be occluded in
other frames.

����� �	� 
� ��� �	� �

����
�����


��
�
������	� 
� ��� �	��

���������� �� and ��� � � 	 
 �

�� otherwise

(5)

where,

� � ���������� ������	� 
� ��� �	�� � � � �

����������	� 
� ��� �	�� ����������	� 
� ��� �	��

� � � � ����������	� 
� ��� �	��� (6)

Note that images from the �����-th frame to the �����-th
frame are not used for computing SSSD, because baselines
in these frames are not long enough to estimate depth sta-
bly. Multiple centered windows approach [6] is also used to
reduce estimation error around occlusion boundaries. Then
SSSD is extended to SSSDM as follows:

������ �	� 
� � �	


�����

������	� 
� �� ���� (7)

We can estimate the depth value � correctly by minimiz-
ing SSSDM unless pixel �	� 
� is occluded in more than �
frames. Additionally, we avoid a local minimum problem
and achieve stable depth estimation using a multiscale ap-
proach [7]. Note that we use the linear interpolation to com-
pute � in the regions without informative textures because
the confidence of estimated � is low in such regions.

3.2. 3-D reconstruction in voxel space
In this paper, a 3-D model is reconstructed in a voxel space
by combining several hundreds dense depth maps. In the
voxel space, each voxel has two values A and B which are
voted by estimated depth data and camera parameters. Both
A and B are voted when the voxel is projected onto a pixel
�	� 
� in a frame. Value A is voted if depth of the voxel in
camera coordinate system equals � of �	� 
�. On the other
hands, value B is voted when depth of the voxel is equal to
or less than � of �	� 
�. The 3-D model is reconstructed by
selecting the voxel whose ��� is more than a given thresh-
old. Note that the color of the voxel is decided by mean
color of pixels that has voted to the value A of the voxel.

4. Experiment
In experiment, we captured an outdoor scene as shown in
Figure 2(a) by a hand-held CCD camera (Sony DSR-DP-
150) with a wide conversion lens (Sony VCL-HG0758).
This image sequence lasts 40 seconds and has 599 frames
(720�480 pixels, progressive scan). The intrinsic camera
parameters are estimated by using the Tsai’s method [8] in
advance, and the extrinsic camera parameters are estimated
by the method described in Section 2. The curved lines in
Figure 3 indicate the camera path and the quadrilateral pyra-
mids indicate the camera postures drawn at every 50 frames.

Dense depth map of the �-th frame is estimated by us-
ing odd frames from the �� � ����-th to the �� � ����-th
frames excluding the �� � ���-th to the �� ����-th frames.
Figure 2(b) shows dense depth maps in which depth values
are coded in intensity. It is confirmed that correct depth val-
ues are obtained for most part of the images as shown in
this figure. However there exist some incorrect depth val-
ues between a column and a wall of the building because
there are no textures around the wall of the building. Linear
interpolation is used for determining depth values in these
areas.
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Figure 3 shows a 3-D model obtained by combining 399
dense depth maps together in the way of voxel voting that is
described in Section 3.2. In this experiment, the voxel space
consists of ��cm cube voxels. A wall behind a column of
the building is reconstructed even if the wall is occluded
from time to time. We also confirm that some positions
are holed because these pixels are not visible enough for
sufficient precision.

5. Conclusion
In this paper, a dense 3-D reconstruction method from a
monocular image sequence captured by a hand-held video
camera is proposed. In this method, first, extrinsic cam-
era parameters are estimated by tracking markers and nat-
ural features. Then, at each frame, a dense depth map is
computed by using already estimated camera parameters.
Finally, a dense 3-D model is reconstructed by combining
hundreds of dense depth maps in a voxel space.

In the experiments, the dense 3-D scene reconstruction is
accomplished for a long image sequence captured in a com-
plex outdoor scene successfully with stable dense depth es-
timation. However, some parts of reconstructed model have
holes. In future work, more accurate model reconstruction
will be explored using the confidence of depth value. Inte-
gration of dense 3-D models from multiple image sequences
will also be investigated for obtaining a complete model.
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Figure 2: Input images and estimated dense depth maps.
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Figure 3: Results of outdoor scene recovery as well as estimated camera positions and postures.
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