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Abstract

Three-dimensional (3-D) reconstruction of a scene
from an image sequence has been widely investigated
for object recognition, robot navigation, mized reality,
and so on. However, there exist some problems con-
cerning calculation cost and accuracy in the 3-D recon-
struction from a long sequence of images that may con-
tain features becoming invisible from time to time by
occlusion. In this paper, we propose a new 3-D recon-
struction method from a monocular image sequence,
which uses a number of predefined markers whose po-
sitions in real world, color and shape are known, as
well as unknown natural features. In this method, the
extrinsic camera parameters and 3-D positions of nat-
ural features are estimated efficiently in every frame
by tracking these markers and natural features auto-
matically. Finally, the accumulation of estimation er-
rors is minimized by optimization over the whole in-
put. We demonstrate two experimental results of 3-D
reconstruction from real image sequences to show the
feasibility of the proposed method.

1 Introduction

Three-dimensional (3-D) reconstruction from an im-
age sequence is widely used for object recognition,
robot navigation, mixed reality, and so on. Shape-
from-motion, which is a method based on features cap-
tured in a monocular image sequence, has attracted
much attention. Many researchers have studied in-
tensively 3-D reconstruction methods from monocular
image sequences by tracking features.

One of the methods of shape-from-motion is the
factorization algorithm [1] which is well known. In
this method, using the linear approximation for cam-
era model, a 3-D scene can be reconstructed stably
and efficiently. However, when the 3-D scene is not
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suitable for affine camera model, reconstructed scene
is distorted. Also the reconstruction is difficult when
features are not observed in all frames of the input
sequence.

Some of other shape-from-motion methods are
based on non-linear optimization algorithms [2] [3].
They employ perspective projection as a camera
model, and a 3-D scene is reconstructed by minimizing
the error of points estimated in input images. There-
fore, a 3-D scene can be reconstructed accurately even
if the scene is not suitable for affine camera model, or
if features are not observed in all frames of input se-
quence. However, a problem of calculation cost still
exists.

Because of the difficulty in reconstructing 3-D scene
and estimating camera motion at the same time from
only a monocular image sequence, sensors such as gyro
and knowledge such as camera path are often used [4]
[5]. However, scenes which can be reconstructed are
limited.

In order to solve these problems, we propose a new
3-D reconstruction method which uses a small num-
ber of predefined markers of known positions, colors,
shapes and natural features in real world. In general,
extrinsic camera parameters can be estimated by us-
ing the linear least square minimization method from
at least six markers whose positions in real world and
in the image are known. Therefore, the first frame
of the input image sequence must contain six or more
markers. It should be noted that intrinsic camera pa-
rameters must be estimated in advance.

In each frame, the extrinsic camera parameters and
3-D positions of natural features are estimated by
tracking both markers and natural features automat-
ically. The markers are tracked by using color and
shape information, and natural features are tracked
by using tentative camera parameters presumed by a
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Figure 1. Flow diagram of 3-D reconstruction.

robust estimation approach. Finally, the accumula-
tion of estimation errors is minimized by optimization
over the whole input. Using our approach, a 3-D scene
can be reconstructed accurately by efficiently analyz-
ing several hundreds images of a very long sequence,
even if the sequence contains features becoming invis-
ible from time to time.

This paper is structured as follows. Section 2 de-
scribes a method of tracking markers and natural fea-
tures, and estimating camera parameters and natu-
ral feature positions in real world. In Section 3, we
demonstrate two experimental results of 3-D recon-
struction from real image sequences to show the feasi-
bility of the proposed method. Finally, Section 4 gives
conclusion and future work.

2 Reconstruction by tracking markers
and natural features

This section describes a 3-D reconstruction method

which is based on tracking features (markers and nat-

ural features). Figure 1 shows the flow diagram of

our algorithm. First, we must specify the positions
of six or more markers in the first frame of input se-
quence. Then the following processes are divided in
two groups, one is camera parameter estimation and
3-D reconstruction at each frame (A) and the other is
global error minimization over the whole input (B).

2.1 Feature tracking and camera param-

eter estimation

2.1.1 Tracking features

In this paper, we assume that the camera posture
and position change greatly during input sequences,
therefore how natural features look in the images may
greatly change too. Tracking natural features only by
image features usually suffers from two problems: One
is that a center of tracked natural feature drifts be-
cause of accumulation of tracking error (a), the other
is that a natural feature is tracked incorrectly when
similar image pattern exists near by the feature (b).
To solve the problem (a), we employ Harris’s in-
terest operator [6] to detect corners or cross-points



of edges in the input images. Local maxima of this
operator are used as candidate positions of tracking
features. For the problem (b), tentative camera pa-
rameters computed by robust estimation are used to
limit the search region for natural feature tracking.

Processing steps for the f-th frame (f > 2) of input
image sequence are described as follows.

(1) The markers used in the (f — 1)-th frame are
searched in the f-th frame by using color and
shape information.

(2) A measure evaluating an interest point is com-
puted by Harris’s operator. Then the local max-
ima of the measure are selected as candidate po-
sitions of natural features. Every feature in the
(f —1)-th frame is tentatively matched with can-
didate feature points which exist within a search
window placed around the feature position in the
(f — 1)-th frame by using a standard template
matching.

(3) Then the robust estimation is started. At
the ¢-th iteration, first, k features P; =
{pi1, pi2, - - -, Pir } are randomly selected from the
tentatively tracked natural features, and tempo-
rary camera parameter 1\71, is estimated using
P;. Next, the median RM; of re-projection er-
rors R;fp is computed for estimated temporary
camera parameter M;. The re-projection error of
feature p is defined as the square of distance be-
tween the tracked position xy, and the position
Xyp that is the re-projected position of estimated
feature position S, onto the image at f-th frame
using camera parameter Mi. The re-projection
error R;r, and the median RM; of R;f, are de-
fined by the following equations.

Ripp = |Xpp — Xppl*. (1)

RMZ' = med(Rifl,Rifg,...,Rifn). (2)

After g times iteration of these steps, the tenta-
tive camera parameter M is selected from tem-
porary camera parameters Mi that minimizes the
following LMedS criterion.

LMedS = min(RM;, RM,,...,RM,). (3)
The algorithm for estimation of the camera pa-
rameter M; from tracked features P; is described
in Section 2.1.2.

(4) The features at the (f — 1)-th frame are bound
to the candidate positions in the f-th frame by
searching the limited searching area. The center
of the limited searching area is a position where
Sp is projected onto the image by using camera
parameter 1\7If.

(5) Finally, the camera parameter M; at the f-th
frame is determined by tracked features.

2.1.2 Extrinsic camera parameter estimation

In this section, a method of estimating extrinsic cam-
era parameters from tracked features is described. In
the proposed method, the re-projection error defined
in Equation (1) is used as a measure for estimation
error. The camera parameter My at the f-th frame
is estimated by minimizing the estimation error Ej
defined as follows:

Ef = Y WpRyy, (4)

p

where Wy, is a weighting coefficient for the feature
p at the f-th frame and is computed by considering
the confidence that is described in Section 2.3. In
this paper, we assume that a camera parameter has
six degrees of freedom and its coordinate system is an
orthogonal coordinate system.

Since estimating camera parameters is a non-linear
minimization problem, there exist problems concern-
ing local minima and calculation cost. In the first step,
an initial camera parameter M ¢ is estimated by a lin-
ear least square minimization method. However M ¥
has twelve degrees of freedom. Next, the estimated
camera parameter M/ is linearly adjusted to reduce
the degree of freedom to six by assuming that the di-
rection of optical axis is correctly estimated. Finally,
Ey is minimized by gradient descent from the adjusted
camera parameter. Because the initial camera param-
eter is expected to be close to the true camera param-
eter, the estimation error E; could be globally mini-
mized.

2.2 Position estimation of natural fea-
tures in real world

The position S, of the natural feature p in real world
is estimated from xy, and My that has already been
determined. The position S, is computed by minimiz-
ing a sum of distances between S, and straight lines
that connect the center of projection in f-th frame
and position x ¢, of feature p in the image as shown in
Figure 2.
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Figure 2. Estimating 3-D position of natural
feature in real world.

2.3 Computing confidences of features
The confidence of features are used for the weight-
ing coefficient of camrera parameter estimation. The
position X(s41), of feature p at the (f + 1)-th frame
does not usually correspond to the re-projected posi-
tion X(y41), because of tracking error. We assume that
the distribution of tracking error can be approximated
by a Gaussian probability density function. The prob-
ability that x(s;1), corresponds to the true position
is represented as follows:

1 X (r1)p — i(f+1)p|2)_ 5)

P(X(s+1)p) = g—zexp(= 52
p

7T0'p

The total probability P,y for all the features is
given by the following equation.

Py = [ p(x(r410p)- (6)
p

The camera parameter M) that maximizes above
P(y41) is obtained by minimizing

EM o — N X = Rl
(f+1) - Z 2 2 ) (7)
Tp
P
where oz is computed by re-projection errors up to

the f-th frame. The confidence Wy, of feature p that
is tracked from (f — k)-th to f-th frame is defined by
comparing Equations (4) and (7) as follows:

f
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2.4 Addition and deletion of natural fea-
tures

Feature candidates that satisfy all the following condi-

tions are added to the set of natural features at every

frame.

e The confidence is over a given threshold.
e The matching error is less than a given threshold.

e The output value of Harris’s operator is more
than a given threshold.

e The maximum angle between lines that connect
the center of projection and estimated 3-D posi-
tion of the feature candidate is more than a given
threshold.

On the other hand, natural features which satisfy at
least one of the following conditions are deleted at
every frame.

e The confidence is under a given threshold.

e The matching error is more than a given thresh-
old.

2.5 Error minimization in the whole in-
put
By using the method described above, the camera
parameters and the natural feature positions in real
world can be estimated over the whole frames. How-
ever, the accumulation of estimation error occurs.
Therefore, in the final step, the accumulation of es-
timation error is minimized by optimization over the
whole input. The accumulated estimation error is
given by the sum of re-projection errors as follows and
is minimized by optimizing the camera parameter M
and natural features position S, over the whole input.

E:ZZWHXfp_ipr- (9)
fop

The camera parameters and feature positions that
are already estimated by earlier process for each frame
are used for initial values in the minimization. W), is a
weighting coefficient for the feature p in the final frame
of the image sequence. Note that, when the feature pis
deleted in the f-th frame, W;_c), is used as W), and
the positions of feature p from the (f —C)-th frame to
f-th frame are not used for this optimization, where
C is a constant, since the features during the period
are considered to be unreliable. Because the initial
values of parameters are considered to be close to the
true values, the error E is expected to be globally
minimized efficiently.
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Figure 3. Experimental results with an indoor scene.



Figure 4. Results of camera parameter estimation, feature position estimation and indoor scene
recovery.

3 Experiments

We have conducted two experiments: One is 3-D re-
construction from a short image sequence of an indoor
scene and the other is from a long image sequence of
an outdoor environment. The intrinsic camera pa-
rameters are estimated by Tsai’s method [7] in ad-
vance, and the extrinsic camera parameters and the
positions of natural features are estimated by the pro-
posed method.

3.1 Experiment with indoor scene

In this experiment, we captured an indoor scene as
shown in Figure 3(a) with a hand-held CCD cam-
era (Sony DCR-VX 1000). This image sequence lasts
8.9 seconds and contains 267 frames (720x 240 pixels).
Although markers can be tracked by using color and
shape information in our method, in this experiment
markers are tracked manually.

Figure 3(b) shows the results of natural feature

tracking. The markers and natural features are repre-
sented by white circles and white crosses, respectively.
As shown in Figure 3(b), natural features are detected
at corners and cross-points of edges. Figure 3(c) shows
the results of Match Move. The Match Move is a
demonstration to show the validity of estimated cam-
era parameters by drawing a computer graphics (CG)
object in the input sequence. Since the CG object
stays still at the fixed position, we can conclude that
camera parameters are correctly estimated.

Estimated camera parameters, feature positions
and a reconstructed indoor scene shape are shown in
Figure 4. Note that in Figure 4 the estimated camera
path, posture and scene shape are illustrated assum-
ing four different view points. The curved lines in this
figure indicate the camera path and the quadrilateral
pyramids indicate the camera postures drawn at every
15 frames. The reconstructed indoor scene is rendered



by combining the polygons that are made from some
camera positions and features in the image by using
the Delaunay’s triangulation method [8].

As shown in Figure 4, the estimated camera path is
smooth. It should be noted that the camera path and
posture are estimated even when the markers cannot
be tracked. However, some errors are found in the esti-
mated camera positions in early frames because there
are few natural features in these frames. The shape
of target object looks natural, even when it is viewed
from the position that is far from original camera po-
sitions.

This experiment is carried out on a PC (CPU: Pen-
tium IIT 1GHz, Memory: 512MB). The sum of calcula-
tion time for processes at each frame is 92 seconds for
8.9 seconds of the input sequence in Figure 3(a). The
calculation time for global optimization is 130 seconds.
The error E expressed in Equation (9) becomes 61.2%
of its initial value with 500 iterations. When 1200 sec-
onds are spent E becomes 58.9% with 5000 iterations.
This shows that the almost optimal parameters are
obtained with 500 iterations.

3.2 Experiment with outdoor scene

In this experiment, we captured an outdoor scene as
shown in Figure 5(a) with a hand-held CCD camera
(Sony DSR-DP-150) with a wide coversion lens (Sony
VCL-HGO0758). This image sequence lasts 40 seconds
and has 599 frames (720 %480 pixels, progressive scan).
Figure 5(b) shows the results of feature tracking.
The markers and natural features are represented by
white circles and white crosses, respectively. Note that
six markers represented by circles are defined in the
first frame as shown in Figure 5. Corners and cross-
points of edges are automatically chosen as natural
features with stable tracking in subsequent frames.
The estimated camera parameters and recovered
scene shape are illustrated in Figure 6. The curved
lines in this figure indicate the camera path and the
quadrilateral pyramids indicate the camera postures
drawn at every 50 frames. Note that the reconstructed
shape is distorted around the roof of the building be-
cause there are no detected natural features on the
roof. A simple triangulation using the Delauney’s
method is not suitable for a complex scene like this.
This experiment is carried out on the same PC as in
Section 3.1. The sum of calculation time at each frame
is 514 seconds for 40 seconds of the input sequence in
Figure 5(a). The calculation time for global optimiza-
tion is 580 seconds. The error E becomes 81.3% of its
initial value with 500 iterations. It becomes 80.0% by
5000 iterations.
Figure 7 illustrates average reprojection errors of
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Figure 5. Experimental results with an out-
door scene.



Figure 6. Results of camera parameter esti-
mation, features position estimation and out-
door scene recovery.

the features after 500 iterations. The horizontal and
vertical axes represent the frame number and average
reprojection error, respectively. It is confirmed that
the average re-projection errors are not accumulated
so much; that is, the errors are less than 2.4 pixels
throughout the sequence.

4 Conclusion

In this paper, a 3-D reconstruction method from
a monocular image sequence is proposed. In this
method, first, given markers in the first image frame
are used so that initial camera parameters can be es-
timated. Then, at each frame, 3-D positions of natu-
ral features and camera parameters are estimated effi-
ciently by tracking both markers and natural features
automatically. Finally, the accumulation of estimation
errors is minimized over the image sequence.

In the experiments, the 3-D scene reconstruction
is accomplished for the image sequences captured in
both indoor and outdoor environments successfully
with automatically adding and deleting features re-
gardless of the visibility of initial markers. However,
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Figure 7. Average re-projection error of fea-
tures after global optimization with an out-
door scene.

when the target scene is complex, it is found that the
reconstruction of shape by Delauney’s method is not
suitable. In future work, a dense depth mapping by
multi-ocular stereo matching will be explored in or-
der to reconstruct a 3-D shape. The objective and
quantitative evaluation of the method is also planned.
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