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Abstract

This paper proposes a novel method for estimating depth
from long-baseline image sequences captured by a pre-
calibrated moving omni-directional multi-camera system
(OMS). Our idea for estimating an omni-directional depth
map is very simple; only counting interest points in im-
ages is integrated with the framework of conventional multi-
baseline stereo. Even by a simple algorithm, depth can be
determined without computing similarity measures such as
SSD and NCC that have been used for traditional stereo
matching. The proposed method realizes robust depth esti-
mation against image distortions and occlusions with lower
computational cost than traditional multi-baseline stereo
method. These advantages of our method are fit for charac-
teristics of omni-directional cameras. In experiments, va-
lidity and feasibility of our algorithm are shown for both a
synthetic and real outdoor scene.

1. Introduction
Depth map estimation from omni-directional images is one
of very important problems in omni-directional computer
vision, because depth information is used in a number of
different applications such as 3-D reconstruction, surveil-
lance, and new view synthesize. In this paper, we focus on
the framework of multi-baseline stereo for moving camera
system that is one of standard for depth estimation for a
large number of image input.

The original multi-baseline stereo method was proposed
by Okutomi and Kanade [1] for multiple image input. The
multi-baseline stereo has such a very good feature that an
arbitrary number of images can be simultaneously used for
depth estimation. This increases the accuracy of depth es-
timation and decreases the ambiguity in stereo matching.
After their work, several researchers have utilized and also
extended the original multi-baseline stereo also for an omni-
directional camera system [2, 3, 4, 5, 6].

Recently, some researchers have employed the multi-
baseline stereo framework for a freely moving camera

[3, 4, 5]. A freely moving video camera including a mov-
ing omni-directional camera is suitable for 3-D modeling
of a large scale environment because it easily makes a long
distance baseline between cameras. However, there exist
some problems in multi-baseline stereo method for a mov-
ing video camera as follows:

(1) Changing patterns in video images: Free motion of
video camera causes significant changes of looks for
corresponding points in video frames. Traditional sim-
ilarity measure such as SSD (Sum of Squared Dif-
ferences), which has been used for the multi-baseline
stereo, is weak for this effect.

(2) Occlusions: When a point on an object where depth
should be estimated is occluded by other objects in
a part of input video, the occluder gives a nega-
tive score to the score function of the multi-baseline
stereo: SSSD (Sum of SSD). This negative score pre-
vents the algorithm from obtaining correct estimation
of depth map around occlusions.

(3) Computational cost: A large number of images con-
sume the large amount of memory and computational
resources. That is especially hard problem for an
OMS that can take high-resolutional multiple images
for each position of the system. Some patches for the
problems (1) and (2) may also increase computational
time.

To avoid these problems, we use interest points such as
corners and cross points of edges in video images as shown
in Figure 1. The framework of our depth estimation is ba-
sically the same as the original multi-baseline stereo except
for a newly employed score function: TNIP (Total Number
of Interest Points). The idea is based on the assumption that
the corners of objects and cross points of texture edges in
the 3-D space (3-D interest points) will appear in video im-
ages as 2-D interest points at the projected positions of the
3-D interest points. By searching a depth that maximizes
the total number of 2-D interest points under epipolar con-
straint, the depth can be determined as a position of a 3-D
interest point. A flow diagram of our algorithm is shown in



Figure 1: Examples of interest points.

(A) Detection of interest points

(B) Depth estimation for interest points 

(C) Elimination of outliers

(D) Depth map interpolation

Figure 2: Flow diagram of dense depth map estimation.

Figure 2. First, interest points are detected for all the video
images (A). Next, depths are estimated by multi-baseline
stereo using TNIP (B). Outliers of estimated depths are re-
jected based on their confidences (C). Finally, dense depth
maps are generated by interpolating sparse depth data (D).

By our method, the problems pointed out earlier can be
solved; (1) interest points are strong for the effect of chang-
ing distortion, (2) the new score function TNIP is not signif-
icantly affected by occluders, (3) computational cost is dras-
tically decreased because depth can be determined by only
counting interest points. However there exists one restric-
tion that we cannot estimate depths for non-interest points
by using TNIP, that is not a critical problem for 3-D model-
ing and some other applications because usually 3-D inter-
est points contain corners of the 3-D model. In most cases,
depth interpolation is sufficient.

Note that TNIP based multi-baseline stereo approach
may be felt similar to the feature based stereo methods for
binocular [7, 8] and trinocular [9, 10] stereo matching that
use edge and corner features as candidates of corresponding
points. However, there is a notable difference that the fea-
ture based stereo methods need to use similarity measures
to determine depths. In these methods, feature points are
only used as candidates of corresponding points. Moreover,
conventional feature based approaches are not designed to
treat a large number of images simultaneously.

The rest of this paper is structured as follows. First, the
original multi-baseline stereo method for a moving video
camera is briefly described in Section 2. In Section 3, the
new score function TNIP for multi-baseline stereo is pro-
posed. Stages (A) to (D) in Figure 2 for estimating a dense
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Figure 3: 3-D position of (x, y) with depth z and its pro-
jected line to each frame.

depth map are detailed in Section 4. Experimental results
with simulation and a real scene then show the validity and
feasibility of the proposed method in Section 5. Finally,
Section 6 describes conclusion and future work.

2. Multi-baseline stereo by using SSSD
In this section, firstly, coordinate systems of a general mov-
ing camera are defined. The principle of the multi-baseline
stereo [1] using SSSD is then briefly summarized.

2.1. Definition of coordinate systems for mov-
ing camera

In the multi-baseline stereo, as shown in Figure 3, a depth
z of a pixel (x, y) in the f-th frame is estimated by using
images from the j-th to k-th frame (j ≤ f ≤ k). In the
following, for simplicity, we assume that the focal length is
1 and lens distortion effect has already been corrected by
known intrinsic parameters. In this case, a 3-D position of
(x, y) with depth z is represented as (xz, yz, z) in the cam-
era coordinate system of the f-th frame. The 3-D position
(xz, yz, z) is projected to the position (x̂ i, ŷi) in the image
of the i-th frame by the following expression.

⎛
⎜⎜⎝

ax̂i

aŷi
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⎞
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⎜⎜⎝

xz
yz
z
1

⎞
⎟⎟⎠ , (1)

where a is a parameter, Mfi denotes a 4 × 4 transforma-
tion matrix from the camera coordinate system of the f-th
frame to the camera coordinate system of the i-th frame. In
the multi-baseline stereo, as shown in Figure 3, the point
(x̂i, ŷi) is constrained on the epipolar line, which is the pro-
jection of the 3-D line connecting the position (xz, yz, z)
and the center of projection in the f-th frame onto the i-th
frame.

2.2. Depth estimation using SSSD
In the traditional multi-baseline stereo, depth z of pixel
(x, y) is determined by using the similarity measure SSD.



The SSD is computed as the sum of squared differences be-
tween two image patterns that have a certain size W . The
SSD for (x, y) in the f-th frame and (x̂i, ŷi) in the i-th
frame is defined using image intensity I as follows.

SSDfixy (z) =∑
(u,v)⊆W

{
If (x + u, y + v) − Ii(x̂i + u, ŷi + v)

}2
. (2)

To evaluate the error of the depth z for all the input images,
the SSD is summed up as follows:

SSSDfxy (z) =
k∑

i=j

SSDfixy (z). (3)

The depth z is determined for each frame so as to minimize
the SSSD function. Generally, to find a global minimum
of the SSSD, depth z should be searched for all the depth
range along a 3-D line from a reference pixel (x, y).

If the pixel (x, y) in the f-th frame is occluded by other
objects in the i-th frame, SSSDfxy (z) for the true depth
z is increased by the occluder because SSDfixy (z) gives a
large error. Thus, to obtain a correct depth at such an oc-
cluded part, some other computationally expensive exten-
sions should be added to the original multi-baseline stereo.
For example, a modified SSSD can be computed by sum-
ming up only lower halves of SSDs [5, 11]. However, there
still remains the computational cost problem and the image
distortion problem.

3. Multi-baseline stereo by counting
interest points

In this section, a new score function TNIP is defined to esti-
mate depth z of pixel (x, y) using the multi-baseline stereo
framework. Generally, feature points in a 3-D space, such
as corners of objects and cross points of texture edges, ap-
pear as 2-D feature points in images at projected positions
of the 3-D feature points. Such a 2-D feature points can be
easily detected by interest operators such as Harris’s [12]
and Moravec’s [13] operators.

In this study, depth z is determined so as to maximize the
TNIP score function that is defined as follows.

TNIPfxy(z) =
k∑

i=j

∑
(u,v)⊆W

Hi(x̂i + u, ŷi + v). (4)

Hi(u, v) =

⎧⎨
⎩

1 ; interest point exists at
(u, v) in i-th frame .

0 ; otherwise
(5)

The TNIP score represents the total number of interest
points that exist in (x̂ i, ŷi) centered windows W for all the

frames. Note that the size of W should be appropriately
small because interest points are not detected at positions
far from projected positions of (xz, yz, z) when there ex-
ists a feature point in 3-D space. It should be noted that the
new score function TNIP is originated assuming the use of a
large number of images. It shows its real ability when used
for a long image sequence.

By using the TNIP instead of the SSSD function in the
multi-baseline stereo, computational time can be drastically
decreased because the time consuming process of compar-
ing intensity patterns can be removed from the depth esti-
mation. Moreover, maximizing the TNIP can obtain a cor-
rect depth even if projected image patterns of 3-D objects
are much distorted by the motion of camera because posi-
tions of interest points are not affected by such a geometric
transformation. The TNIP has another good feature that the
TNIP is not significantly influenced by occluders because it
counts only positive scores. These claims will be justified
by experiments later.

4. Dense depth map estimation from
an image sequence

This section details each stage of dense depth map esti-
mation shown in Figure 2. In our method, first, interest
points in all the input images are detected by Harris inter-
est operator (A). Next, depth of each detected interest point
is determined by the multi-baseline stereo framework with
the TNIP score function (B). Outliers of estimated depths
are then eliminated by using their confidences defined by
considering the consistency among the results in multiple
frames (C). Finally, dense depth maps are generated by in-
terpolating sparse depth data (D).

4.1. Detection of interest points
In the first stage (A), interest points such as corners and
cross points of edges are detected in input images by Harris
interest operator [12]. Harris operator has been evaluated
by Schmid as one of the best operators with respect to the
repeatability rate of detected position under different geo-
metric transformation [14]1.

Input images are first smoothed by a Gaussian operator.
After that, deviations Ix and Iy of pixel intensity are com-
puted for all the pixels in x and y directions, respectively.
Feature quantity F (x) of the pixel x = (x, y) is then com-
puted as a minimum eigenvalue of the matrix A that is de-
fined below.

A =
∑
x∈W

(
Ix(x)2 Ix(x)Iy(x)

Ix(x)Iy(x) Iy(x)2

)
. (6)

1Although SIFT(Scale Invariant Feature Transform)[15] is one of good
operator, detected positions by SIFT are usually far from edges. In this
research, SIFT does not fit for our purpose.



F (x) = min(λ1, λ2), (7)

where λ1 and λ2 are eigenvalues of the matrix A. After
computing the feature quantity F (x) for all the pixels, lo-
cal maxima of F (x) are detected as interest points. In this
stage, interest points are detected for all the frames in an
image sequence.

4.2. Depth estimation for interest points
In the second stage (B), depths of all the interest points de-
tected in the stage (A) are computed by maximizing the
TNIP score function defined in Section 3. The depth z is
searched to find a maximum TNIP in a given range of depth
along a 3-D line from each reference pixel. By repeating the
estimation of depth z for all the interest points in the input
image sequence, sparse depth data can be acquired.

Note that, in this stage, any intensity images are not
needed for depth estimation. Only 2-D positions of inter-
est points and camera parameters should be stored to com-
pute TNIP. It means that our method needs only 1/8 mem-
ory space to compute depth by compared with SSSD, if 8
bit grayscale images are assumed to be used for SSSD.

4.3. Elimination of outliers
In the third stage (C), unreliable depths are rejected by cross
validation approach for multiple image input. As shown
in Figure 3, the depth z estimated by using TNIP relates
interest points at projected positions of the 3-D feature point
(xz, yz, z) in neighboring frames with one another. In this
paper, the confidence Cp of an interest point p is defined by
using this relation as follows.

Cp =

∑
i∈Lp

{0; p /∈ Li, 1; p ∈ Li}
|Lp| , (8)

where Lp denotes a set of interest points in neighboring
frames related by the depth z of the interest point p. Cp

means the consistency among depth data obtained in the
neighboring frames, and is computed as a ratio that interest
points i(i ∈ Lp) are mutually related with the interest point
p. If all the depths are correctly estimated, Li(∀i ∈ Lp)
should equal to Lp. Only in this case, Cp becomes max-
imum value 1. In this stage, depth of the interest point p
whose confidence Cp is lower than a given threshold is re-
garded as an outlier, and is deleted.

4.4. Depth map interpolation
Depth interpolation is necessary to generate dense depth
maps because the TNIP-based multi-baseline stereo cannot
estimate a depth at non-interest points. In this paper, we
simply assume that the space among interest points is ex-
pected to be planar because interest points are corners of

(a) plane 1 (b) plane 2

Figure 4: Textures of planes.
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plane 2
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Figure 5: Layout of planes and camera path in simulation.

(a) first frame (b) middle frame (c) last frame

Figure 6: Sampled frames from 91 input images.

3-D objects. In the final stage (D), input images are divided
into triangle regions using interest points with Delaunay’s
triangulation method [16]. Depth data are then linearly in-
terpolated for these triangles.

5. Experiments
We have carried out two kinds of experiments. One is con-
cerned with the accuracy comparison between SSSD and
TNIP in computer simulation. The other is conducted for
estimating a dense depth map for a real outdoor environ-
ment.

5.1. Comparison between SSSD and TNIP in
computer simulation

This experiment is carried out to show the validity of the use
of the TNIP score function for feature based multi-baseline
stereo by comparing it with the traditional score function
SSSD.
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Figure 7: Average errors in depth estimation (varying window size and noise level).
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Figure 8: Average errors in depth estimation (varying number of input images and noise level).

(1) Setup of simulation: In the experiment, two textured
planes are located in a virtual environment, and a virtual
camera takes an image sequence by moving the camera
around these planes. To observe characteristics of TNIP
and SSSD, two kinds of texture patterns are used for the
planes, as shown in Figure 4. The layout of the planes and
the motion path of virtual camera are illustrated in Figure 5.
Totally 91 input images, some of which are shown in Figure
6, are taken by the moving camera whose motion draws a
quarter circle as illustrated in Figure 5. By the motion of the
camera, the plane 1 is occluded by the plane 2 in after half of
the input images, and both textures are apparently distorted
by the camera motion. This is one of very severe input for
traditional multi-baseline stereo. To observe raw character-
istic of both score functions, outliers are not deleted and
depth data is not interpolated. To take into account camera
calibration errors about intrinsic and extrinsic camera pa-
rameters, the Gaussian noise with standard deviation σ is
added to projected positions of 3-D points. The searching
range of depth for TNIP and SSSD is set as 3,000mm (near)
to 35,000mm (far) in this simulation.

(2) Evaluation for varying window size and noise level:
Firstly, depth of each interest point is estimated and evalu-
ated for varying two parameters; the size of window W in
Eqs. (2) and (4), and the noise level σ for projected position
of 3-D point. In this experiment, all of the input images are

used to compute TNIP and SSSD. Figure 7 denotes average
errors of estimated depth values with respect to varying win-
dow sizes and noise levels. This experiment has given us an
conclusion that 3×3 window is the best for TNIP and larger
size windows have never give good scores because too large
size windows cannot distinguish interest points in an image.
On the other hand, in the case of SSSD, 15 × 15 window
gives totally better results than other window sizes. Note
that TNIP’s results for plane 1 and 2 have approximately
the same accuracy regardless of existence of occluded part
in plane 1 in contrast with SSSD’s. This means that depths
by TNIP are not affected by occlusions and the difference
of texture patterns.

(3) Evaluation for varying number of input images and
noise level: Next, to observe the behavior of each score
function for the varying number of input images, 91 in-
put images that are used to compute the score functions are
thinned out to N images. According to the previous results,
in this case, window sizes for TNIP and SSSD are fixed to
3 × 3 and 15 × 15, respectively. Figure 8 denotes average
errors of estimated depths with respect to varying noise lev-
els and number of input images. In all the results, average
errors are monotonously decreased with respect to the num-
ber of input images. In this figure, we can confirm that TNIP
and SSSD’s behavior and accuracy for the varying number
of input images are almost the same except that the accu-



racy for the SSSD’s result on the occluded plane 1 is a little
worse than the other’s.
(4) Computational time: Table 1 indicates the aver-
age time to estimate a depth of a single pixel using all
the 91 input images with respect to different window
sizes. The computation time is measured by using a PC
(CPU: Pentium-4 Xeon 3.20GHz dual, Memory: 2GB).
Now, we can conclude that the computational cost of TNIP
(3 × 3 window) is about 40 times cheaper than SSSD’s
(15× 15 window) to achieve almost the same accuracy.

Table 1: Average computational time for estimating a depth
of a single pixel [milli-seconds].

window size 1 × 1 3 × 3 7 × 7 15 × 15 31 × 31

SSSD 10.4 23.1 85.6 356.4 1529
TNIP 7.2 8.2 9.2 10.8 19.0

(a) appearance (b) view volume

Figure 9: Omni-directional multi-camera system: Ladybug.

5.2. Dense depth map estimation in an outdoor
environment

In this experiment, an outdoor environment is captured by
an Omni-directional Multi-camera System (OMS): Lady-
bug [17]. Figure 9 shows an appearance and view volume
of Ladybug. This camera system has six radially located
camera units and takes synchronized six image sequences
at 15fps (resolution of each camera: 768× 1024 pixels).

First, the outdoor environment was captured by the OMS
as 3,000 images (500 frames). Figure 10 shows a sampled
frame of six input image sequences. Intrinsic camera pa-
rameters including geometric relations among fixed cam-
era units are calibrated in advance by using a marker board
and a 3-D laser measure [18]. Extrinsic camera parame-
ters of the input image sequences are estimated using bun-
dle adjustment by tracking both a small number of feature
landmarks of known 3-D positions and a large number of
natural features of unknown 3-D positions in input images
across adjacent camera units[19]. Figure 11 illustrates the
recovered camera path that is used as an input for depth es-
timation. The curved line and pyramids denote the motion

Figure 10: Sampled frame of input image sequences.

path of a camera unit and its posture at every 20 frames, re-
spectively. The length of the camera path is approximately
29m. The accuracy of estimated camera path is evaluated as
50mm about camera position and 0.07degree about camera
posture[19].

Next, omni-directional depth maps are actually esti-
mated by the method described in Section 4. In the stage
(A), interest points are detected in all the frames of six in-
put image sequences by Harris operator. In this experiment,
1,750 interest points are detected on average in a single in-
put image (10,500 points per frame).

In the stage (B), depths of all the interest points detected
in the stage (A) are estimated using the TNIP score func-
tion. In this stage, interest points in the (f − 100)-th to
the (f + 100)-th frames at every 2 frames (606 images,101
frames) are used to estimate depth data of the f-th frame.
The size of window W was set as 3× 3 pixels according to
the result of the computer simulation described in the previ-
ous section. The searching range to find a maximum TNIP
in this stage is 1,000mm (near) to 80,000mm (far).

In the stage (C), low confidence depths are eliminated.
The threshold for Cp defined in Eq. (8) was set as 0.5 in this
experiment. Figure 12 shows the results of depth estimation
for the images in Figure 10. In this figure, depth values
are corded in intensity. Figure 13 indicates TNIP values of
randomly selected six interest points in Figure 12. We can
confirm from Figure 13 that each TNIP plot has a single
apparent peak at a certain depth value and there are no other
comparable peaks. This clearly shows that depth estimation
can be easily achieved for these interest points.

Finally, omni-directional dense depth maps are gener-
ated in the stage (D). Figure 14 shows a panoramic image
that is generated from six input images shown in Figure 10.
Figure 15 shows the corresponding dense depth map. By



(a) top view

(b) side view

Figure 11: Camera path of OMS used for input (29m).

comparing these figures, we can confirm that a dense depth
map is correctly computed for most parts of the input image.
However, some incorrect depths are also observed around
the boundaries between the buildings and the sky. These
incorrect results are caused by depth interpolation over dif-
ferent objects. To improve the result, region information in
input images should be considered in the triangulation stage
(D).

6. Conclusion
In this paper, a novel multi-baseline stereo for a moving
camera has been proposed, where depth can be determined
by only counting the number of interest points. The pro-
posed method shows its real ability when used for long-
time and long-baseline image sequences and is congenial
with omni-directional images. Our method has be proven
to be robust against occlusions and image distortion prob-
lem that are caused by camera motion. Additionally, the
computational cost for the proposed method is also cheaper
than the method based on the traditional SSSD function. In
experiments, these claims have been justified by using both

Figure 12: Result of depth estimation for interest points in
Figure 10.
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Figure 13: TNIP scores for searching depth.

synthetic and real image sequences. In future work, esti-
mated depth maps will be integrated to reconstruct a 3-D
model of a large outdoor environment.
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