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Abstract This paper describes a novel method for estimating positions and postures of an omnidirectional multi–

camera system from its multiple image sequences and sparse position data acquired by GPS. The proposed method

is based on a structure-from-motion technique which is enhanced by using multiple image sequences as well as GPS

position data. Moreover, the position data are also used to remove mis-tracked features. The proposed method

allows us to estimate position and posture without accumulative errors and annoying effects due to moving objects

in outdoor environments. The validity of the method is demonstrated through experiments using both synthetic

and real outdoor scenes.
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1. Introduction

This paper addresses a problem of estimating position and

posture of an omnidirectional multi-camera system (OMS)

from its multiple image sequences and GPS position data.

This problem is especially important in acquisition of im-

ages of outdoor environments and its geometric information.

A typical instance is construction of a virtual reality envi-

ronment using real images covering user’s field of view [1]～

[3]. In this application, precise estimation of position and

posture of the camera is required to show a user virtual ob-

jects superimposed seamlessly on presented real images in

the environment. To use real images acquired outdoors for

such kind of applications, camera recovery algorithm should

possess two characteristics : (i) errors in estimating positions

and postures are not accumulated; (ii) the algorithm is strong

for non-rigid motion of video such as moving objects and in-

cidence of light of the sun. Camera recovery problem can

be theoretically solved only from image information by using

feature tracking based methods [4], [5]. However, algorithms

using only images acquired with a general single camera do

not satisfy the characteristics above. Some kinds of sensors

or some kinds of prior knowledge about surroundings should

be used in order to satisfy them.

The simplest method is to measure the required informa-

tion directly by using any appropriate sensors. Guven [6] in-

tegrated an RTK-GPS (Real Time Kinematic GPS), a mag-

netometer and a gyro sensor to obtain position and posture

data without accumulative errors. Highly accurate calibra-

tion and synchronization among sensors is needed but this

problem is hardly treated. Giving a kind of prior knowl-

edge also resolves the accumulative error problem. As prior

knowledge about surroundings, manually selected known 3D-

positions [7], [8] (called feature landmarks) and manually cre-

ated 3D models [9], [10] are sometimes used in addition to fea-

ture tracking. However, these are hardly applicable to large

scale environments because much cost is required to obtain

this information.

The most hopeful solution for the accumulative error prob-

lem is a combination of images and GPS positions [11]～

[13]. In this paper, we propose a camera recovery method

for an omnidirectional multi-camera system (OMS) using

both video sequences and GPS position data. The proposed

method extends our previous works [11] for OMS whose field

of view is wide and is hardly filled with moving objects.

Our method is based on structure-from-motion with feature

tracking and parameter optimization using GPS positions

and video frames. In feature tracking, tentative parameters

are estimated from GPS position data. They are used to

avoid mismatching and to obtain correspondences of feature

points among different cameras. In the optimization, a new

error function defined by using GPS position data and re-

projection error is minimized to determine position and pos-

ture parameters of the OMS. In our method, the following

conditions are assumed: (i) OMS and GPS are correctly syn-

chronized; (ii) the geometrical relation between all the cam-



eras and the GPS receiver is always fixed; (iii) the distance

between the GPS receiver and the representative camera of

the OMS is known, and the direction of GPS receiver in cam-

era coordinate system is unknown. In this paper, it is also

assumed that OMS has been calibrated in advance and the

intrinsic camera parameters (including lens distortion, focal

length and aspect ratio) of each element camera are known.

In the remainder of this paper, we first formulate the cam-

era recovery problem of an OMS using GPS positions in

Section 2. The implementation of the proposed method is

then described in Section 3. In Section 4, the validity of the

method is demonstrated through experiments for both syn-

thetic and real outdoor scenes. Finally, we give conclusion

and future work in Section 5.

2. Formulation of Camera Recovery of
Omnidirectional Multi-camera System

The goal of this study is to obtain position and posture

parameters of an OMS and a direction of GPS receiver from

camera when multiple video frames and GPS positions are

given. The main topic described in this section is how to

integrate GPS position data to the structure-from-motion

problem. In the proposed method, the general structure-

from-motion algorithm is enhanced to treat GPS position

information.

In the general structure-from-motion algorithm, re-

projection error that is observation error is minimized to

obtain the parameters. First, we make it clear what the

parameters are. Second, as one of observation errors in our

problem, the re-projection error is briefly explained. The er-

ror concerning GPS, which is another observation error, is

then modeled by using geometric relation between camera

and GPS. Finally, we describe a new error function com-

bining re-projection error and the error function concerning

GPS.

2. 1 Position and Posture Parameters of Omnidi-

rectional Multi-camera System

Omnidirectional multi-camera system is constructed of a

set of cameras such as Ladybug (Point Grey Research) which

can obtain omnidirectional videos as shown in Figure 1. As

mentioned in the previous section, we assume that position

and posture relations among element cameras are known and

fixed in this paper. The positions and postures of all the cam-

eras can be expressed as a pair of position and posture of a

representative camera．In the i-th frame, the transformation

from the world coordinate system to the camera coordinate

system of each element camera c can be expressed by the

following matrix Nic by using the transformation Mc from

the world coordinate system of a calibration process to the

camera coordinate system of the camera c (= 0, 1, 2, 3...n).

Figure 1 A sampled frame of an acquired omnidirectional video.

Right bottom is an image of vertical element camera.

Others are horizontal ones.

Nic = Mc(M0)
−1Ni0 =

[
Ric tic

0 1

]
, (1)

where tic and Ric represent the translation and the rotation

from the world coordinate system of the i-th frame to the

camera coordinate system of the camera c. This problem

is treated as estimation of position (Ri = Ri0) and posture

(ti = ti0) of the representative camera (c=0).

2. 2 Error Function for Optimization Process

Re-projection Error

Re-projection error is generally used for camera recovery

based on feature tracking. The method for minimizing the

sum of squared re-projection error is usually referred to as

bundle adjustment. The re-projection error Φij is defined as

|qij − q̂ij | for the feature j in the i-th frame, where q̂ repre-

sents the 2D projected position of the feature’s 3D position

and q represents the detected position of the feature in the

image.

Error of GPS positions

Generally, if GPS positions and estimated parameters do

not contain any errors, the following equation is satisfied in

the i-th frame among the parameters (position ti, posture

Ri), GPS position gi and the position of GPS receiver d in

the camera coordinate system.

Rigi + ti = d (i ∈ F), (2)

where F denotes a set of frames in which GPS positions are

obtained. However, if GPS position gi and the parameters

ti and Ri contain some errors, we must introduce an error

vector ni.

Rigi + ti = d + ni. (3)

In this paper, we introduce an error function Ψi related to



GPS receiver using the length of the error vector n: Ψi = |ni|.
This function means the distance between the measured po-

sition of the GPS receiver and the predicted one. Next, we

describe a new error function E which is a combination of

the error function Ψij related to GPS receiver and the re-

projection error Φ.

Error Function Concerning Feature and GPS

The new error function E is defined as follows:

E =
ω

|F|
∑
i∈F

Ψ2
i

+
1∑

i

∑
c
|Sic|

∑
i

∑
c

µi

∑
j∈Sic

wjΦ
2
ijc, (4)

where ω means a weight for Ψi, and Si denotes a set of feature

points detected in the i-th frame. The coefficients µi and wj

mean the confidences for frame and feature, respectively. wj

represents the confidence coefficient of feature point j, which

is computed as an inverse variance of re-projection error Φij .

The coefficient µi denotes the confidence of the i-th frame.

Two terms in the right-hand side in Eq. (4) is normalized

by |F| and
∑

i

∑
c
|Sic| so as to set ω as a constant value

independent of the number of features and GPS positioning

points.

3. Implementation of Camera Recov-
ery Method of Omnidirectional Multi-
camera System

The proposed method basically consists of feature tracking

and optimization of camera parameters as shown in Figure

2. First, two processes of (A) feature tracking and (B) initial

parameter estimation are performed in order. At constant

frame intervals, the narrow range optimization process (C)

is then carried out to reduce accumulative errors. Finally,

estimated parameters are refined using many tracked feature

points in the wide range optimization process (D). In the

processes (C) and (D), a common optimization is performed.

The difference in both processes is the range of optimized

frames. In the process (C), the range of optimization is a

small part of the input frames because future data cannot

be treated in sequential process. On the other hand, in the

process (D), a large number of frames are optimized and up-

dated.

(A) Feature tracking :

The purpose of this process is to determine corresponding

points between the current frame i and the previous frame

(i− 1). The main strategy to avoid mismatching in this pro-

cess is that feature points are detected at corners of edges by

Harris operator [14] and detected feature points are tracked

robustly with a RANSAC [15] approach.

In the first process (a), natural feature points are auto-

Figure 2 Overview of the proposed algorithm.

matically detected by using the Harris operator for limiting

feature position candidates in the images. In the next pro-

cess (b), every feature in the (i − 1)-th frame is tentatively

matched with a candidate feature point in the i-th frame by

using a standard template matching. In the third process (c),

tentative parameters are then estimated by selecting correct

matches using a RANSAC approach [15]. In the final process

(d), every feature is re-tracked within a limited searching

area in image frames of all the element cameras, which can

be computed by the tentative parameters and 3D positions

of the features.

(B) Initial parameter estimation :

This processes computes 3D positions of feature points and

position and posture parameters which minimize the sum of

squared re-projection errors. In this process, the parameters

of the current frame i are computed by using the tracked fea-

ture points. The error function Einit defined by Eq. (5) is

minimized to optimize both the parameters ti and Ri of all

the frames and 3D positions of all the feature points.

Einit =
∑

j∈Sic

wjΦ
2
ijc. (5)

(C) Narrow range optimization :

In this process, the frames from the (i− (k + 2l) + 1)-th to

the current frame are used to refine the camera parameters

from the (i − (k + 2l) + 1) to the (i − l)-th frames, as illus-

trated in Figure 3. This process is designed to use feature

points and GPS positions obtained in the frames around the

updated frames. To reduce computational cost, this process

is performed every k frames. Note that the estimation result

is insensitive to the value of l if it is large enough. The con-

stant l is set as tens of frames to use a sufficient number of

feature points reconstructed in the process (B). The constant

k is set as several frames, which is empirically given so as not

to accumulate errors in the initial parameters estimated in

the process (B).

It is difficult to obtain a global minimum solution because

there are a large number of local minima in the error func-

tion E. In order to avoid this problem, we currently adopt

a method to change the weight µi in the iteration of the op-
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Figure 3 Optimization in the process (C).

timization, which is experimentally derived from computer

simulations. In this method, the weight is changed when-

ever optimization process is converged. However, it should

be note that there is a room for improvement because the

present method is found just experimentally. This imple-

mentation is used in the next process (D)

(D) Wide range optimization :

The optimization in the process (C) dose not provide suffi-

cient accuracy for a final output because it is performed for

a part of frames and GPS positions for feedback to feature

tracking process (A). The purpose of this process is to re-

fine parameters by using tracked features and GPS positions

in wide range frames. The algorithm of this process is the

same as the narrow optimization process (C) when l and k

are set as several hundred frames except that divided ranges

are independent of each other.

4. Experiment

This section describes experiments for both synthetic and

real outdoor scenes. First, the experiment for synthetic data

is carried out to evaluate the accuracy of the position and pos-

ture parameters of OMS estimated by the proposed method

when the correspondences of feature points are given. The

experiment for real data is then demonstrated to confirm the

validity of the whole proposed method.

Note that some parameters used in the optimization pro-

cess (C) and (D) were set as follows. The weight coefficient

ω in the error function E defined by Eq. (4) was set as 10−9.

The weight µi of the corresponding frame was always set as

1.0, when a GPS position was obtained, When it was not

obtained, 1.0 and 2.0 were alternately set as the weight µi

whenever the optimization step was converged. In the nar-

row optimization process (C), we set the number of updated

frames k = 5 and the number of optimized frames 49 (l = 22).

4. 1 Synthetic Data

The purpose of this simulation is to evaluate the param-

eters ti and Ri estimated in the wide optimization process

(D). In addition, the validity of the proposed method is con-

firm by comparison with the conventional method [8]. We

gave a point set as a virtual environment that was used to

generate 2D feature positions in synthetic input images. The

(a) Errors of the estimated center of projection.

(b) Errors of estimated optical axes.

Figure 4 Error of the estimated position and posture.

virtual camera takes 900 frames by moving in the virtual en-

vironment. The intrinsic parameters of the element camera

in the virtual OMS are set the same as the real camera de-

scribed in the next section. The position of GPS receiver in

the representative camera coordinate system is set as (60,-

150,250)[mm]. We added errors to input data as follows.

The GPS positions with Gaussian noise (σ =30 mm) are

given every 15 frames. The feature points are projected to

the virtual camera, and detected with Gaussian noise (σ =1.6

pixel) and quantization error. The initial parameters are gen-

erated by adding Gaussian noise (position: σ = 500 mm, pos-

ture: σ = 0.020 rad) to the ground truth. In the compared

method [8], all the frames is set as key frames in which more

than 15 feature landmarks appear. The landmarks are given

as feature points whose confidence coefficient is set as large

enough, and the 2D positions of the landmarks in each frame

are given without any errors.

Position and posture errors in the simulation result for

the synthetic data are shown in Figure 4. In the compared

method, the position error is 47.5 mm, and the postures er-

ror is 0.0019 rad on average. In the proposed method, the

position error is 30.7 mm, and the posture error is 0.0023 rad

on average.

These results indicate that the proposed method enables

us to obtain position and posture parameters of OMS in the



Figure 5 Omnidirectional multi-camera system and GPS receiver.

same order of precision as the conventional method without

any manual acquisitions of surrounding information. The dif-

ference in the accuracy between the proposed method and the

compared one can be caused by the difference of the effect

of the given absolute position information such as GPS posi-

tions and landmarks. Concretely, the reason why the posture

errors are smaller than the position ones is that landmark po-

sition information obtained from images is more sensitive to

the estimation of postures than GPS position information.

4. 2 Real Scene

The purpose of this experiment with real data is to con-

firm the validity of the proposed method which includes the

feature tracking and the error models of feature point detec-

tion. In this section, we first describe the condition of the

experiment. After that, two kinds of experimental results

are shown.

In this experiment, we used Ladybug and a GPS receiver

(Nikon LogPakII, horizontal accuracy ±3.0 cm, vertical accu-

racy ±4.0 cm) fixed on an electric mortar vehicle (see Figure

5). We acquired 7200 frames and GPS positions while the ve-

hicle was moving 1.0km distance at 7.6km/h. The acquired

frames and GPS positions were manually synchronized. La-

dybug was calibrated by using the method developed in our

previous work [16]. The distance between OMS and GPS re-

ceiver is 300 mm which is manually measured.

Figure 6 shows the estimated positions of Ladybug after the

wide range optimization process (D). In this figure, the cam-

era path is smoothly recovered and lies around the road. The

match move using the estimated parameters is also demon-

strated in Figure 7. The virtual cube in Figure 7 seem to

be located at the same position in the real environment in

most part of the input sequence. We have confirmed that

estimated parameters do not contain fatal errors from these

results.

In the last experiment, we confirm the result of optimiza-

tion of divided sequences of the wide range optimization pro-

cess (D). Figure 8 indicates the differences in estimated po-

sitions of the OMS between divided sequences and single se-

Figure 6 Horizontal trace of omnidirectional multi-camera system

on the environment map.

quence. The ranges of divided sequences are shown in Figure

9. The difference of almost all of frames are smaller than the

accuracy 30.7mm shown in the previous section 4. 1. This

result indicates that we can deal with more long sequences

by dividing the sequences if the range parameters k′ and l′

are set adequately.

5. Conclusion

In this paper, we have proposed a method to estimate po-

sitions and postures of an omnidirectional multi-camera sys-

tem without accumulative errors from image data and coordi-

nated GPS positions. In the proposed method, GPS position

information is used for both feature tracking and optimiza-

tion of position and posture parameters of the omnidirec-

tional multi-camera system.

We have confirmed that the proposed method allows us

to obtain extrinsic parameters in the same order precision

as the conventional shape-from-motion method using a large

number of landmarks if GPS positions are obtained well. We

will investigate the case that the number of GPS positions

including large errors is more than current experiments.
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