自然特徴点ランドマークデータベースと姿勢センサに基づく 高速な回転にロバストなカメラ位置・姿勢推定

松田 幸大[†] 池田 聖[†] 佐藤 智和[†] 横矢 直和[†]

† 奈良先端科学技術大学院大学 情報科学研究科 〒 630-0192 奈良県生駒市高山町 8916-5 E-mail: †{kodai-m,sei-i,tomoka-s,yokoya}@is.naist.jp

あらまし カメラの位置及び姿勢を推定する技術は,拡張現実感,ロボットナビゲーションなど様々な分野で応用が 可能である.従来提案されている,環境の特徴点の三次元位置や画像テンプレートが登録されたランドマークデータ ベースを用いたカメラ位置・姿勢推定法は,物理的なインフラを用いず,カメラの絶対的な位置・姿勢が得られる特 長がある.しかし,カメラが高速な回転を伴う場合,モーションプラーや対応点の探索範囲が拡大することによって 誤対応が生じ,推定誤差が増大する問題がある.本稿では,この問題を解決するために,ランドマークデータベース と姿勢センサから得られる角速度情報を併用したカメラ位置・姿勢推定法を提案する.提案手法では,まず角速度情 報を用いてデータベース中の多数のランドマークから推定に用いるランドマークを効果的に選択する.次に,データ ベース中の画像テンプレートに対してモーションプラーを再現することで,モーションブラーによる類似度の低下を 防ぎ,誤対応を低減する.

キーワード カメラ位置・姿勢推定, ランドマークデータベース, 姿勢センサ, 拡張現実感

Robust Estimation of Camera Position and Posture with High-speed Rotation

Based on Feature Landmark Database and Inertial Sensor

Kodai MATSUDA[†], Sei IKEDA[†], Tomokazu SATO[†], and Naokazu YOKOYA[†]

† Nara Institute of Science and Technology, 8916–5 Takayama, Ikoma, Nara, 630–0192 Japan E-mail: †{kodai-m,sei-i,tomoka-s,yokoya}@is.naist.jp

Abstract This paper describes a novel camera position and posture estimation method using an inertial sensor and feature landmark database which basically consists of three-dimensional positions of natural feature points (landmarks) and their image templates. This method is widely applicable to a number of fields such as robot navigation and augmented reality system for wearable computer users. In such fields, it is frequently required to estimate absolute position and posture of cameras for environment without any physical infrastructures. A conventional method using feature landmark database has already been satisfying this requirement. However, the estimation error is increased due to miss tracking of image features caused by high-speed rotation of camera. To solve this problem, in the proposed method, the landmarks are first selected from the database by using angular velocity acquired from the inertial sensor. The motion blur is then reproduced on image templates of landmarks, and blurred templates are used for matching with those in the input images.

Key words camera position and posture estimation, landmark database, inertial sensor, augmented reality

1. はじめに

カメラの位置及び姿勢を実時間で推定する技術は,拡張現実

感[1],[2] やロボットナビゲーション[3] など,様々な分野への 応用が可能である.特に,屋外などの広範囲な環境を対象とし たシステムでは,カメラの絶対的な位置及び姿勢の取得が必

要である.従来から,赤外線マーカなどのセンサ[4],[5] や画 像マーカ[6], [7] などの物理的なインフラを用いた手法,予め 作成された環境のモデルを用いた動画像処理による手法[8]~ [11] など, 多くの手法が提案されてきた. 物理的なインフラを 用いた手法[4]~[7] では, センサからの信号やマーカのパター ンから個々のインフラを識別することが容易であるため,時系 列的な情報なしでカメラの位置及び姿勢の推定が可能であり, 高速な動きに対してロバストな推定が実現できる.しかし,こ れらの手法では,環境中に物理的なインフラを整備する必要が あり,自然環境などインフラの設置が困難な環境においては利 用できない. 一方,環境のモデルを用いた手法では,センサや マーカなどのインフラを用いずに,カメラの位置及び姿勢の 推定が可能である.環境のモデルとして,ワイヤーフレームモ デル[8] や自然特徴点群[9],[10], テクスチャつきのポリゴンモ デルを用いる手法[11] が提案されており,これらの手法では, エッジや自然特徴点などの入力画像中の特徴とモデルとを対応 付けることによりカメラの絶対的な位置及び姿勢が推定され る.一般的に,こういった環境モデルの生成には多大な労力を 要するが,自然特徴点を用いた手法[9],[10]では,動画像から structure-from-motionの技術を用いて環境の三次元モデルが 自動生成されるため,広範囲な景観を容易にモデル化できると いう特長を持つ.しかし,これらの環境の三次元モデルを用い た手法 [8] ~ [11] では,画像中の個々の特徴を一意に識別するこ とが難しく,カメラの回転及び並進が大きい場合,モーション ブラーや特徴の探索範囲の拡大によりモデルと入力画像におい て誤対応が生じ、カメラ位置及び姿勢の推定誤差が増大する問 題がある.

この問題を解決するために,環境のモデルとセンサから得ら れる情報を併用してカメラの位置及び姿勢を推定するハイブ リッドな手法 [12] ~ [14] が研究されている. 探索範囲外にモデ ルとの対応点が存在することによる誤対応を防ぐ手法として, Reitmayr ら [12] や Jiang [13] らは, 姿勢センサによる計測結 果と動画像処理による推定を拡張カルマンフィルタにより統合 することで,カメラの回転に対してロバストに位置及び姿勢の 推定を行う手法を提案している. Klein ら [14] は姿勢センサに より得られる角速度情報からブラーを考慮したエッジ探索ウィ ンドウを作成することで, ワイヤーフレームモデルと入力画像 中の物体のエッジがモーションブラーによって誤対応を起こす 問題を解決し、モーションブラーが生じた入力画像に対するカ メラの位置及び姿勢の推定を可能にしている.しかし,従来の ポリゴンモデル[12] やワイヤーフレームモデル[13],[14] の利用 を前提とした手法では,対象とする環境の規模が大きく複雑な 場合、モデルの作成自体が難しいという問題がある、

本稿では,自然特徴点群の三次元位置と画像テンプレートを データベース化したランドマークデータベース[9]及び姿勢セ ンサにより得られる角速度情報を併用することで,カメラの高 速な回転が生じた場合においても位置及び姿勢をロバストに推 定する手法を提案する.提案手法では,まず,現フレームにお けるカメラの暫定的な位置及び姿勢を求め,フレーム毎にデー タベース中の多数のランドマークから推定に用いるランドマー クを適切に限定する.次に,限定されたランドマークの画像テ ンプレートに対して入力画像と同様のモーションブラーを再現 し,モーションブラーによる入力画像とランドマーク間の類似 度の低下を防ぐ.さらに,カメラの並進を考慮した大きさの検 出ウィンドウによって検出された入力画像内の特徴点とランド マークをテンプレートマッチングによって対応付け,カメラの 位置及び姿勢を推定する.実験では,並進移動するカメラに高 速な回転を与えて取得した動画像からカメラの位置及び姿勢を 推定し,特徴点とランドマークの対応や推定されたカメラの位 置及び姿勢の推定精度を検証することにより提案手法の有効性 を示す.ただし,本稿では,カメラの内部パラメータは既知で あり,カメラと姿勢センサの同期及び位置と姿勢の関係は与え られているものとする.

以下,2節では,ランドマークデータベースと姿勢センサを 用いたカメラ位置及び姿勢推定について述べ,3節では,提案 手法の精度評価実験について報告する.最後に,4節でまとめ と今後の課題について述べる.

ランドマークデータベースと姿勢センサを 用いたカメラ位置及び姿勢推定

提案手法では,予め構築したランドマークデータベースを用 いてカメラ位置及び姿勢を推定する.以下では,まずランド マークデータベースの構築について述べる.次に,オンライン 逐次処理の枠組みである,ランドマークデータベースと姿勢セ ンサによるカメラの位置及び姿勢の推定手法について述べる.

2.1 ランドマークデータベースの構築

ランドマークデータベースは,多数のランドマークから成り, 各ランドマークの情報として,ランドマークの3次元位置と外 観情報を保持している.様々な位置からのランドマークの見え 方の変化に対応するために,外観情報は各ランドマークの撮影 地点毎に,以下の情報を含む[9].

- ・ ランドマークを撮影したカメラ位置
- ・ 多重スケールの画像テンプレート
- ・ 画像テンプレートの法線ベクトル
- ・ 画像テンプレートのスケール

以上の情報は,事前に環境の撮影及び基準となる自然特徴点の 三次元位置の計測を行い,環境内の自然特徴点を三次元復元す ることで取得する[15].

2.2 カメラ位置及び姿勢の推定手法

上記のランドマークデータベース,姿勢センサからの角速度 情報及び入力画像から,カメラの絶対的な位置及び姿勢を推定 する手法について述べる.本手法の処理の流れを図1に示す. 各フレームにおけるステップは以下の通りである.まず,姿勢 センサで得られた角速度情報から暫定的なカメラの位置及び姿 勢を算出し(A),データベースから推定に利用するランドマー クを限定する(B).限定されたランドマークの画像テンプレー

図 1 全体の処理の流れ

トに対して入力画像と同様のモーションプラーを再現する(C). 生成したテンプレートと入力画像のテンプレートマッチング により,入力画像中の自然特徴点とランドマークとを対応付け (D),最後に,それらの対応関係を用いて PnP 問題[16]を解く ことによりカメラの位置及び姿勢を推定する(E).ただし,本 稿では,初期フレームのカメラの位置及び姿勢は何らかの手法 によって取得出来ることを前提としており,カメラ位置及び姿 勢の推定が失敗した場合には,再度,カメラの初期位置・姿勢 の推定から各ステップの処理を繰り返す.このカメラ位置・姿 勢推定の成功・失敗判定については,ステップ(E)の説明で述 べる.以下,ステップ(A)~(E)について詳述する.

(A) 姿勢センサによるカメラ姿勢の算出

姿勢センサから得られる姿勢情報のみを用いると,ドリフトによる累積的な誤差の影響を受けるため,本ステップでは, ドリフト誤差を含まないカメラの姿勢を計測するために,第 (i-1)フレームでランドマークを用いて推定された絶対的な カメラの姿勢 \mathbf{R}_{i-1}^c と微小変化量である角速度 ϖ_i ,および予 めキャリプレーションにより得たカメラ座標系からセンサ座標 系への変換 \mathbf{R}_i^c のみからカメラの姿勢 $\mathbf{\tilde{R}}_i^c$ を算出する.以下で は,カメラの姿勢 $\mathbf{\tilde{R}}_i^c$ の算出方法について述べる.

図 2 に示すように,第*i*フレームにおけるカメラの姿勢 \mathbf{R}_{i}^{c} は,姿勢センサの姿勢 \mathbf{R}_{i}^{g} とカメラ座標系から姿勢センサ座 標系への変換 \mathbf{R}^{cg} から $\mathbf{R}_{i}^{c} = (\mathbf{R}^{cg})^{-1}\mathbf{R}_{i}^{g}$ で表される.また, 第(i-1)フレームから第iフレームへの姿勢センサの回転を $\mathbf{R}_{i-1,i}^{g}$ としてあらわすと, $\mathbf{R}_{i}^{g} = \mathbf{R}_{i-1,i}^{g}\mathbf{R}_{i-1}^{g}$ が成立する.以上より,第iフレームにおけるカメラの暫定的な姿勢 $\mathbf{\tilde{R}}_{i}^{c}$ は, $\Omega_{i} = (\mathbf{R}_{i-1}^{g})^{-1}\mathbf{R}_{i-1,i}^{g}$ を用いて以下の式で表される.

$$\mathbf{R}_{i}^{c} = \mathbf{R}_{i-1}^{c} \mathbf{\Omega}_{i} \mathbf{R}^{cg} \mathbf{R}_{i-1}^{c}$$
(1)

 Ω_i は第(i-1)フレームから第iフレームにおける微小な回転 であり、第iフレームにおける角速度 $\varpi_i = (\varpi_{ix}, \varpi_{iy}, \varpi_{iz})$ の 要素を用いて、以下の様に3 × 3の歪対象行列で表現する.

$$\mathbf{\Omega}_{i} = \begin{pmatrix} 0 & -\varpi_{iz} & \varpi_{iy} \\ \varpi_{iz} & 0 & -\varpi_{ix} \\ -\varpi_{iy} & \varpi_{ix} & 0 \end{pmatrix}$$
(2)

本研究では,姿勢センサとカメラ間の変換行列 \mathbf{R}^{cg} を既知と し,カメラの姿勢 \mathbf{R}^{c}_{i-1} 及び行列 Ω は累積誤差のない回転を 表すので,式(2)を用いることで前フレームのカメラ姿勢と現 フレームにおける角速度情報から絶対的なカメラの姿勢を表す $\mathbf{\tilde{R}}^{c}$ を算出できる.

(B) ランドマークの限定

ステップ (A) で算出した暫定的なカメラの姿勢 $\mathbf{\hat{R}}_{i}^{c}$ を用いて, ランドマークデータベースに登録されている多数のランドマー クから,入力画像との対応付けに用いるランドマークを限定す る処理について述べる.ここでは,第*i*フレームに対して予測 されるカメラの位置 $\mathbf{\tilde{P}}_{i}^{c}$ 及び姿勢 $\mathbf{\tilde{R}}_{i}^{c}$ から,画角内に入るランド マークを選択し,入力画像と対応付ける候補とする.具体的に は,第(*i*-1)フレームでのカメラの位置を \mathbf{P}_{i-1}^{c} ,ランドマー ク*j*の三次元位置を $\mathbf{l}_{(j)}$ とすると,第*i*フレームにおける画像 上へのランドマーク*j*の予測投影位置 $\mathbf{\tilde{c}}_{(j)i} = [x_{(j)i}, y_{(j)i}]^{t}$ は, ランドマークの奥行き $a_{(j)i}$ を用いて,以下の式で表される.

$$\begin{pmatrix} a_{(j)i}x_{(j)i} \\ a_{(j)i}y_{(j)i} \\ a_{(j)i} \end{pmatrix} = \tilde{\mathbf{R}}_{i}^{c}\mathbf{l}_{(j)} + \tilde{\mathbf{P}}_{i}^{c}$$
(3)

ただし,第iフレームにおけるカメラの予測位置 $\mathbf{\hat{P}}_i$ は次式により算出する.

$$\tilde{\mathbf{P}}_{i}^{c} = 2\mathbf{P}_{i-1}^{c} - \mathbf{P}_{i-2}^{c} \tag{4}$$

また, $a_{(j)i}$ は第iフレームにおけるカメラ座標系でのランド マークjの奥行きを表す.本ステップでは,上式で得られる予 測投影位置 $\tilde{c}_{(j)i}$ がカメラの画角内に存在するランドマークの みを選択し,推定に利用するランドマークとする.

(C) 画像テンプレートに対するモーションブラーの再現

ステップ (B) により選択されたランドマークの画像テンプ レートから,入力画像のモーションブラーを再現した画像テン プレートを生成する処理について述べる.本研究では,等速直 線運動を仮定した PSF モデルを用いて,各ランドマークに対 してデータベースの画像テンプレートにモーションブラーを再 現する.この処理により,図3に示すように,入力画像とラン ドマーク間の画像テンプレートの類似度を高めることが出来る.

図 3 テンプレート間の正規化相互相関値に対するモーションブラー 再現の効果の確認

モーションブラーの大きさ,方向は,以下のベクトルbで表される.

$$\mathbf{b} = (\mathbf{c}_{(j)i-1} - \tilde{\mathbf{c}}_{(j)i})s\Delta t \tag{5}$$

ただし, $\mathbf{c}_{(j)i-1}$ は第 (i-1)フレームにおけるカメラ位置 \mathbf{P}_{i-1}^{c} 及び姿勢 \mathbf{R}_{i-1}^{c} と三次元位置 $\mathbf{l}_{(j)}$ から算出したランドマークの 第 (i-1)フレームにおける画像への投影座標, Δt はフレーム 間の時間を表し,シャッタースピード s は既知とする. (**D**)入力画像とランドマークの対応付け

ステップ (B) で限定された各ランドマークに対して入力画像 中の自然特徴点を対応付ける処理について述べる.ここでは, ステップ (B) で算出されたランドマーク j の予測投影位置 $\tilde{\mathbf{c}}_{(j)i}$ を中心とする大きさ δ のウィンドウ内において,ステップ (C) で生成されたテンプレートを用いて,正規化相互相関を指標と したテンプレートマッチングを行う.ウィンドウの大きさ δ は, カメラの並進移動と姿勢センサの計測精度を考慮して設定す る.具体的には,ランドマーク j のカメラからの奥行き $a_{(j)i}$, アプリケーションに合わせて設定されたカメラの最大並進速度 V_{max} ,姿勢センサの精度から設定される δ' を用い,検出ウィ ンドウの大きさ $\delta_{(j)i}$ を以下の式で算出する.

$$\delta_{(j)i} = \frac{V_{max}\Delta t}{a_{(j)i}} + \delta' \tag{6}$$

ただし,多重スケール画像テンプレート間の正規化相互相関は, 各テンプレート内の全ての画素の輝度値を並べたベクトルをp, qとし,その平均値を並べたベクトルをp,qとした時,以下 の式により算出される.

$$C(p,q) = \frac{(\mathbf{p} - \overline{\mathbf{p}}) \bullet (\mathbf{q} - \overline{\mathbf{q}})}{|\mathbf{p} - \overline{\mathbf{p}}|| \mathbf{q} - \overline{\mathbf{q}}|}$$
(7)

この相関値が最大かつ閾値以上である対応候補点をランドマー クと対応付ける.

(E) 誤対応の排除とカメラ位置及び姿勢推定

本ステップでは,RANSAC[17]を用いたロバスト推定によっ てこれまでのステップで求めたランドマークと自然特徴点の対 応関係から誤対応を除去し,正しい対応関係のみから再投影誤 差を最小化することで,カメラの位置及び姿勢を推定する.再 投影誤差は,ランドマーク j の画像上への投影座標 $\mathbf{c}_{(j)}$ と,ラ ンドマークに対応づけられた自然特徴点の画像上での検出座標 $\mathbf{c}_{(j)}$ の自乗距離の和 $E = \sum_{j} |\tilde{\mathbf{c}}_{(j)} - \mathbf{c}_{(j)}|^2$ とし,これを最 小化することで最適なカメラの位置・姿勢を求める.再投影誤 差の最小化は非線形最小化問題であり,局所解の問題や計算量の問題を伴うため,まず線形解法を用いてまずカメラ位置・姿勢の初期値を求め[16],次に,勾配法を用いた非線形最小化によって再投影誤差 E を最小化する.ここで,最終的に利用可能な対応点数が6点を下回るか再投影誤差が十分に最小化されない場合,推定が失敗したとみなす.

3. カメラ位置・姿勢推定の精度評価実験

提案手法の有効性を検証するために,実動画像を用いた精度 評価実験を行った.以下,まず実験環境について述べ,次に, 提案手法の定量的な評価実験について述べる.

3.1 実験環境

本実験で入力として用いた動画像,角速度情報,ランドマー クデータベースのデータの取得方法について述べる.動画像 は手持ちのビデオカメラ (SONY DSR-PD150, 解像度 720× 480 pixel, 15 fps), 姿勢情報はカメラに固定された姿勢センサ (TOKIMEC TISS-5-40,方位角誤差:±2度,ドリフト誤差:±3 度/時,ロール角・ピッチ角誤差:±0.5度)で得た.ランドマー クデータベースの生成には,放射状に固定された複数のカメラ により全天球の動画像を取得できる全方位型マルチカメラシス テム (Point Grey Research 社 Ladybug, 解像度 768×1024× 6台)を用いた.このカメラシステムにより屋外環境を移動撮 影し,佐藤らの手法[15] によりカメラパスと自然特徴点の三次 元位置を推定することでランドマークデータベースを構築した. データベース中のランドマーク数は約7500個であり,1つの ランドマークあたりの撮影地点数は平均8ヶ所であった.また, 定量的な評価に用いるカメラ位置及び姿勢の真値は,環境内の 特徴点の三次元位置をトータルステーションを用いて測定し、 各フレームの画像上でそれらの特徴点を手動で対応付け, PnP 問題を解くことで算出した.

3.2 定量的な評価実験

上記の実験環境において,以下に述べる2つの比較手法と提 案手法で推定されたカメラの位置及び姿勢を真値と比較するこ とで推定精度を調べた.ただし,モーションプラーが生じた画 像から直接カメラの位置・姿勢の真値を求め,推定誤差を計算 することは困難なので,推定に用いた入力動画像は,以下の2 種類の方法で撮影したものを用いた.

入力1 回転のみを伴うカメラによる撮影

入力2 回転と並進を伴うカメラによる撮影

回転のみを伴うカメラによって得られた動画像(入力1)は, モーションプラーが生じていない初期フレームから算出したカ メラ位置を真値とすることで,動画像中の全フレームに対し て推定位置誤差を算出した.一方,回転と並進を伴うカメラに よって得られた動画像(入力2)は,推定誤差を算出する各フ レームにおいてカメラの位置・姿勢の真値を算出し,推定位置 誤差・推定姿勢誤差を算出した.ただし,真値計算時の再投影 誤差が1.5pixel以上となったフレームは,信頼性が低いため, 評価対象から除外した.入力1,2に対応する動画像の一部の フレームをそれぞれ図 4,図 5 に示す.これらは,入力画像撮 影時において自動設定されたシャッタースピード 1/15 秒で撮 影した.また,本実験において,カメラの最大並進速度 V_{max} は,一般的な人間のジョギングの速度である 8km/h とし,姿 勢センサの精度から算出した検出ウィンドウの大きさ δ' を 16 画素に設定した.

本実験では,上記の入力画像を用い,提案手法と2つの比較 手法とを比較する.2つの比較手法は,本研究で新たに導入し たステップ(B),(C)の有効性を確認するために,提案手法中 のステップ(B),(C)のうち,1つのステップを以下に示す処 理に置き換えたものとする.

比較手法(1) ステップ(B)において,前フレームで推定した カメラの位置及び姿勢からランドマークを限定する

比較手法 (2) ステップ (C) において,画像テンプレートに対してモーションブラーの再現を行わない

3.2.1 回転のみを伴うカメラで撮影された動画像(入力1)

各フレームにおける角速度と最終的なカメラ位置・姿勢推定 に用いられたランドマークの数を図6に,各手法の平均推定 誤差と標準偏差を表1に示す.比較手法(1)では,277フレー ムにおいてカメラ位置姿勢推定が途中で失敗した.図6から, 比較手法(1)の推定処理の失敗は,大きな角速度が発生した直 後に発生していることが分かる.比較手法(2)では,大きな角 速度が発生した 70 フレームや 270 フレーム付近における対応 付けられたランドマーク数の減少が見られる.一方,提案手法 にも対応付けられたランドマーク数の変化が見られるが比較的 安定しており,全てのフレームで推定が成功した.このことか ら, 姿勢センサを用いたステップ(B), (C)の導入により, 高 速な回転に対するロバスト性が向上していることが分かる.ま た,各比較手法に比べ,提案手法は各フレームにおける誤差の ばらつきが少なく、大きな誤差を生じることなくカメラの位置 を推定できていることが分かる.統計的に推定誤差の検証を行 うため,有意水準を5%として提案手法に対してt検定を行っ た結果,比較手法(1)とのt値が-7.64,比較手法(2)とのt値 が 7.93 であり,提案手法と比較手法の推定誤差に有意な差が あることを確認した.

3.2.2 回転と並進を伴うカメラで撮影された動画像 (入力2)

各フレームにおける角速度と最終的なカメラ位置・姿勢推定 に用いられたランドマーク数を図7に,各手法の平均推定誤差 を表2に示す.比較手法(1)及び(2)では,それぞれ44フレー ム,84フレームにおいて,カメラの位置及び姿勢の推定が途中 で失敗した.これに対して,提案手法では,最終フレームまで カメラ位置姿勢を推定することが出来た.図7から,比較手法 (1)では,前述で述べた実験と同様に,大きな角速度が発生し た直後に推定処理の失敗が発生し,表2から位置及び姿勢の推 定誤差も増大していることが分かる.比較手法(2)では,表2 から提案手法と同程度の精度が得られているが,比較手法(1) と同様に,大きな角速度が発生した直後に推定処理の失敗が見

図 6 角速度の大きさと対応付けられたランドマーク数 (入力 1)

₹

1	平均推定誤差と標準偏差	(入力1)
ς <u>τ</u>	十圴戸に広左しに十個左	

	平均位置誤差 (mm)	標準偏差 (mm)		
提案手法	394	309		
比較手法 (1)	706	607		
比較手法 (2)	1239	1960		

図 7 角速度の大きさと対応付けられたランドマーク数 (入力 2)

られる.今回の実験では,モーションブラーが生じたフレーム では推定誤差が検証できないため,表2はブラーの発生してい ないフレームにおける平均推定誤差を表しているが,比較手法 (1),(2)における推定の失敗は,いずれもモーションブラーが 生じたフレームにおいて発生しており,推定に用いられるラン ドマーク数が減少しているため,これらのフレーム付近におい て比較手法の推定誤差が増大している可能性がある.

4. まとめと今後の課題

自然特徴点ランドマークデータベースと姿勢センサによる角

50フレーム

100フレーム

150フレーム

200フレーム

図 4 入力画像 (入力 1)

50フレーム

図 5 入力画像 (入力 2)

200フレーム

and Augmented Reality, pp. 27-36, 2002.

- [8] E. Rosten and T. Drummond: "Fusing points and lines for high performance real-time tracking," Proc. 10th IEEE Int. Conf. on Computer Vision, pp. 1508-1515, 2005.
- [9] 大江,佐藤,横矢: "幾何学的位置合わせのための自然特徴点ラ ンドマークデータベースを用いたカメラ位置・姿勢推定",日本 バーチャルリアリティ学会論文誌, Vol.10, No.3, pp. 285-294, 2005.
- [10] I. Gordon and D. G. Lowe: "Scene modeling, recognition and tracking with invariant image features," Proc. 3rd IEEE Int. Symp. on Mixed and Augmented Reality, pp. 110-119, 2004.
- [11] V. Lepetit, L. Vacchetti, D. Thalmann and P. Fua: "Fully automated and stable registration for augmented reality applications," Proc. 2nd IEEE Int. Symp. on Mixed and Augmented Reality, pp. 93-102, 2003.
- G. Reitmayr and T. W.Drummond: "Going out: Robust [12]model-based tracking for outdoor augmented reality," Proc. 5th IEEE Int. Symp. on Mixed and Augmented Reality, pp. 109-118, 2006.
- [13] B. Jiang, U. Neumann and S. You: "A robust hybrid tracking system for outdoor augmented reality," Proc. IEEE Conf. on Virtual Reality, pp. 3-10, 2004.
- [14]G. S. W. Klein and T. W. Drummond: "Tightly integrated sensor fusion for robust visual tracking," Image and Vision Computing, Vol.22, pp. 769-776, 2004.
- T. Sato, S. Ikeda and N. Yokoya: "Extrinsic camera param-[15]eter recovery from multiple image sequences captured by an omni-directional multi-camera system," Proc. European Conf. on Computer Vision, Vol.2, pp. 326-340, 2004.
- [16]出口: "射影幾何学による PnP カメラ補正問題の統一的解法", 情処シンポジウム, Vol.90, pp. 41-50, 1990.
- M. A. Fischler and R. C. Bolles: "Random sample consen-[17]sus: A paradigm for model fitting with applications to image analysis and automated cartography," Communications of the ACM, Vol.24, pp. 381-395, 1981.

表 2 平均推定誤差 (入力 2)

	平均位置誤差 (mm)	平均姿勢誤差 (度)
提案手法	459	0.36
比較手法(1)	1406	1.42
比較手法 (2)	571	0.39

速度情報,動画像を入力とし,データベースと入力画像中の自 然特徴点を対応付けることにより,カメラの位置・姿勢を推定 する手法を提案した.提案手法では,姿勢センサによる角速度 情報を推定に用いるランドマークの選択やモーションブラーを 考慮したテンプレートマッチングに利用することにより,人工 的なマーカを用いることなく,高速な回転を伴うカメラの絶対 的な位置及び姿勢をロバストに推定することができる.今後の 課題として、カメラ位置・姿勢推定のリアルタイム化、動画像 と姿勢センサによる姿勢情報の同期の自動化が挙げられる.

献

文

- [1] S. Feiner, B. MacIntyre, T. Höllerer and A. Webster: "A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment," Proc. 1st IEEE Int. Symp. on Wearable Computers, pp. 74-81, 1997.
- [2] P. Daehne and J. Karigiannis: "Archeoguide: System architecture of a mobile outdoor augmented reality system," Proc. 1st IEEE Int. Symp. on Mixed and Augmented Reality, pp. 263-264, 2002.
- [3] 松本、稲葉、井上: "ビューベーストアプローチに基づく移動 ロボットナビゲーション",日本ロボット学会誌, Vol.20, No.5, pp. 506-514, 2002.
- [4] A. Harter, A. Hopper, P. Steggles, A. Ward and P. Webster: "The anatomy of a context-aware application," Proc. 5th IEEE Int. Conf. on Mobile Computing and Networking, pp. 59-68, 1999.
- [5] InterSense Inc.: "Is-900,", http://www.isense.com/products/ prec/is900/.
- [6] 加藤, M. Billinghurst, 浅野, 橘: "マーカー追跡に基づく拡張現 実感システムとそのキャリブレーション",日本バーチャルリア リティ学会論文誌, Vol.4, No.4, pp. 607-616, 1999.
- [7] L. Naimark and E. Foxlin: "Circular data matrix fiducial system and robust image processing for a wearable visioninertial self-tracker," Proc. 1st IEEE Int. Symp. on Mixed